Electrorotation of Isolated Generative and Vegetative Cells, and of Intact Pollen Grains of Lilium longiflorum

Electrorotation of Isolated Generative and Vegetative Cells, and of Intact Pollen Grains of... The dielectric structure of mature pollen of the angiosperm Lilium longiflorum was studied by means of single-cell electrorotation. The use of a microstructured four-electrode chamber allowed the measurements to be performed over a wide range of medium conductivity from 3 to 500 mS m−1. The rotation spectra of hydrated pollen grains exhibited at least three well-resolved peaks in the kHz-MHz frequency range, which obviously arise due to the multilayered structure of pollen grains. The three-shell model can explain the complex rotational behavior of pollen grains in terms of conductivities, permittivities and thicknesses of the following compartments: the exine and intine of the pollen grain wall as well as the membrane and cytoplasm of the vegetative cell. However, the number of unknown parameters (more than 8) was too large to allow unambiguous values to be assigned to any of them. Therefore, to facilitate the evaluation of the pollen grain parameters, additional rotational measurements were made on isolated vegetative and generative cells. The rotation spectra of these cells could be fitted very accurately on the basis of the single-shell model by assuming a dispersion of the cytoplasm. The data on the membrane and cytoplasmic properties of isolated vegetative cells were then used for modeling the rotation spectra of pollen grains. This greatly facilitated the fitting of the theoretical model to the experimental data and allowed the dielectric properties of the major structural units to be determined. The dielectric characterization of pollen is of enormous interest for plant biotechnology, where pollen and isolated germ cells are successfully used for production of transgenic crop and drug plants of economic importance by means of electromanipulation techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Electrorotation of Isolated Generative and Vegetative Cells, and of Intact Pollen Grains of Lilium longiflorum

Loading next page...
Copyright © Inc. by 1998 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial