Electroreduction of 6-amino-5-nitroso-1,3-dimethyluracil on an active carbon fiber electrode in caffeine green synthesis

Electroreduction of 6-amino-5-nitroso-1,3-dimethyluracil on an active carbon fiber electrode in... The primary electroreduction behavior of 6-amino-5-nitroso-1,3-dimethyluracil (ANDMU) on an active carbon fiber (ACF) electrode in acidic aqueous solution was studied by cyclic voltammetry and ultraviolet spectrophotometry for application in electrochemical synthesis and electrosorption separation in the caffeine industry. On the ACF electrode at potentials more negative than −0.3 V versus SCE, ANDMU could be electro-reduced to 5,6-diamino-1,3-dimethyluracil. The mechanism of electroreduction of ANDMU is possibly coupling of two electron-transfer steps with electrocatalytic hydrogenation. ANDMU could also be electro-oxidized on an ACF electrode at potentials more positive than 0.8 V versus SCE. The potential window of ANDMU on the ACF electrode is deduced to be −0.3 to 0.8 V versus SCE under these experimental conditions. The results are indicative of high feasibility of electrochemical hydrogenation of ANDMU on an ACF electrode in caffeine green synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electroreduction of 6-amino-5-nitroso-1,3-dimethyluracil on an active carbon fiber electrode in caffeine green synthesis

Loading next page...
 
/lp/springer_journal/electroreduction-of-6-amino-5-nitroso-1-3-dimethyluracil-on-an-active-AkEB2Md43c
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0598-6
Publisher site
See Article on Publisher Site

Abstract

The primary electroreduction behavior of 6-amino-5-nitroso-1,3-dimethyluracil (ANDMU) on an active carbon fiber (ACF) electrode in acidic aqueous solution was studied by cyclic voltammetry and ultraviolet spectrophotometry for application in electrochemical synthesis and electrosorption separation in the caffeine industry. On the ACF electrode at potentials more negative than −0.3 V versus SCE, ANDMU could be electro-reduced to 5,6-diamino-1,3-dimethyluracil. The mechanism of electroreduction of ANDMU is possibly coupling of two electron-transfer steps with electrocatalytic hydrogenation. ANDMU could also be electro-oxidized on an ACF electrode at potentials more positive than 0.8 V versus SCE. The potential window of ANDMU on the ACF electrode is deduced to be −0.3 to 0.8 V versus SCE under these experimental conditions. The results are indicative of high feasibility of electrochemical hydrogenation of ANDMU on an ACF electrode in caffeine green synthesis.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 6, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off