Electrophysiological and Fluorescence Microscopy Studies with HERG Channel/EGFP Fusion Proteins

Electrophysiological and Fluorescence Microscopy Studies with HERG Channel/EGFP Fusion Proteins HERG (human ether-a-go-go-related gene) encodes the Kv11.1 protein α-subunit that underlies the rapidly activating delayed rectifier K+ current (I Kr) in the heart. Alterations in the functional properties or membrane incorporation of HERG channels, either by genetic mutations or by administration of drugs, play major roles in the development of life-threatening torsades de pointes cardiac arrhythmias. Visualization of ion channel localization is facilitated by enhanced green fluorescent protein (EGFP) tagging, but this process can alter their properties. The aim of the present study was to characterize the electrophysiological properties and the cellular localization of HERG channels in which EGFP was tagged either to the C terminus (HERG/EGFP) or to the N terminus (EGFP/HERG). These fusion constructs were transiently expressed in human embryonic kidney (HEK) 293 cells, and the whole-cell patch-clamp configuration and a confocal laser scanning microscope with primary anti-HERG antibodies and fluorescently labeled secondary antibodies were used. For EGFP/HERG channels the deactivation kinetics were faster and the peak tail current density was reduced when compared to both wild-type HERG channels and HERG/EGFP channels. Laser scanning microscopic studies showed that both fusion proteins were localized in the cytoplasm and on discrete microdomains in the plasma membrane. The extent of labeling with anti-HERG antibodies of HEK 293 cells expressing EGFP/HERG channels was less when compared to HERG/EGFP channels. In conclusion, both electrophysiological and immunocytochemical studies showed that EGFP/HERG channels themselves have a protein trafficking defect. HERG/EGFP channels have similar properties as untagged HERG channels and, thus, might be especially useful for fluorescence microscopy studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Electrophysiological and Fluorescence Microscopy Studies with HERG Channel/EGFP Fusion Proteins

Loading next page...
 
/lp/springer_journal/electrophysiological-and-fluorescence-microscopy-studies-with-herg-Iv64uadCIT
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9101-0
Publisher site
See Article on Publisher Site

Abstract

HERG (human ether-a-go-go-related gene) encodes the Kv11.1 protein α-subunit that underlies the rapidly activating delayed rectifier K+ current (I Kr) in the heart. Alterations in the functional properties or membrane incorporation of HERG channels, either by genetic mutations or by administration of drugs, play major roles in the development of life-threatening torsades de pointes cardiac arrhythmias. Visualization of ion channel localization is facilitated by enhanced green fluorescent protein (EGFP) tagging, but this process can alter their properties. The aim of the present study was to characterize the electrophysiological properties and the cellular localization of HERG channels in which EGFP was tagged either to the C terminus (HERG/EGFP) or to the N terminus (EGFP/HERG). These fusion constructs were transiently expressed in human embryonic kidney (HEK) 293 cells, and the whole-cell patch-clamp configuration and a confocal laser scanning microscope with primary anti-HERG antibodies and fluorescently labeled secondary antibodies were used. For EGFP/HERG channels the deactivation kinetics were faster and the peak tail current density was reduced when compared to both wild-type HERG channels and HERG/EGFP channels. Laser scanning microscopic studies showed that both fusion proteins were localized in the cytoplasm and on discrete microdomains in the plasma membrane. The extent of labeling with anti-HERG antibodies of HEK 293 cells expressing EGFP/HERG channels was less when compared to HERG/EGFP channels. In conclusion, both electrophysiological and immunocytochemical studies showed that EGFP/HERG channels themselves have a protein trafficking defect. HERG/EGFP channels have similar properties as untagged HERG channels and, thus, might be especially useful for fluorescence microscopy studies.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 15, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off