Electron transfer to buckminster-fullerenes and functionalized fullerene derivatives in aqueous and protic media, as studied by radiolytic techniques

Electron transfer to buckminster-fullerenes and functionalized fullerene derivatives in aqueous... The primary radical products, namely C60 *− and C70 *− which were formed by reactions with either the solvated electrons or (CH3)2 *C(OH) radicals exhibit distinct absorption bands in the near-IR. Reaction of a water-soluble C60/γ-cyclodextrin complex with α-hydroxyalkyl radicals and hydrated electrons also involves electron transfer, as indicated by the dependence of the rate constants on the redox potential of the reducing species. Pulse radiolysis of micellar C60 solutions in BRIJ 35 and Triton X-100, on the other, exhibited electron transfer from various reducing radicals to the fullerence core. Water soluble fullerence mono-derivatives, e.g. C60[C(COO− 2]2 (1) and C60(C9H11O2)(COO−) (2) did not show any noticeable reactivity towards strongly reducing species which can be ascribed to the formation of clusters in which the hydrophobic fullerence core is shielded by a surrounding layer of negatively charged carboxylate functions. Upon incorporation into γ-cyclodextrin the reduction of 1 and 2 occurs rapidly as indicated by both an accelerated decay of the hydrated electron absorption and the formation of the characteristic near-IR absorption due to (C60 *−[C(COO−)/γ-CD and (C60 *−) (C9H11O2)(COO−)/γ-CD at 1030 nm. The all-equatorial bis- and tris-adducts, e.g. equatorial-C60[C(COO−)2]2 and equatorial-C60[C(COO−)2]3, did not show any evidence with respect to the occurrence of aggregation phenomena and yielded the respective radical anions equatorial-(C60 *−) [C(COO−)2]n in high yields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electron transfer to buckminster-fullerenes and functionalized fullerene derivatives in aqueous and protic media, as studied by radiolytic techniques

Loading next page...
 
/lp/springer_journal/electron-transfer-to-buckminster-fullerenes-and-functionalized-7hiBHdsgrS
Publisher
Springer Netherlands
Copyright
Copyright © 1997 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856797X00051
Publisher site
See Article on Publisher Site

Abstract

The primary radical products, namely C60 *− and C70 *− which were formed by reactions with either the solvated electrons or (CH3)2 *C(OH) radicals exhibit distinct absorption bands in the near-IR. Reaction of a water-soluble C60/γ-cyclodextrin complex with α-hydroxyalkyl radicals and hydrated electrons also involves electron transfer, as indicated by the dependence of the rate constants on the redox potential of the reducing species. Pulse radiolysis of micellar C60 solutions in BRIJ 35 and Triton X-100, on the other, exhibited electron transfer from various reducing radicals to the fullerence core. Water soluble fullerence mono-derivatives, e.g. C60[C(COO− 2]2 (1) and C60(C9H11O2)(COO−) (2) did not show any noticeable reactivity towards strongly reducing species which can be ascribed to the formation of clusters in which the hydrophobic fullerence core is shielded by a surrounding layer of negatively charged carboxylate functions. Upon incorporation into γ-cyclodextrin the reduction of 1 and 2 occurs rapidly as indicated by both an accelerated decay of the hydrated electron absorption and the formation of the characteristic near-IR absorption due to (C60 *−[C(COO−)/γ-CD and (C60 *−) (C9H11O2)(COO−)/γ-CD at 1030 nm. The all-equatorial bis- and tris-adducts, e.g. equatorial-C60[C(COO−)2]2 and equatorial-C60[C(COO−)2]3, did not show any evidence with respect to the occurrence of aggregation phenomena and yielded the respective radical anions equatorial-(C60 *−) [C(COO−)2]n in high yields.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off