Electron transfer reaction of 4,4′-bipyridine with triethylamine in acetonitrile: effect of water addition on the reaction dynamics

Electron transfer reaction of 4,4′-bipyridine with triethylamine in acetonitrile: effect of... The photo-induced electron-transfer reaction of 4,4′-bipyridine (BPY) with triethylamine (TEA) in acetonitrile is studied by laser flash photolysis. The reaction mechanism and kinetics are found very sensitive to the presence of a small amount of water. At low water concentrations (i.e. <0.003 M), an extremely fast-rising metastable product is detected for the first time. A triplet charge transfer complex (3ECT) is found to be the primary intermediate preceding the electron transfer process. Up to about 0.1 M, water facilitates the electron transfer rate, whereas higher water concentrations retard the rate of electron transfer. The Stern-Volmer plot of the triplet decay rate versus the TEA concentration is consistent with the presence of 3ECT in equilibrium with the free excited triplet state of BPY. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electron transfer reaction of 4,4′-bipyridine with triethylamine in acetonitrile: effect of water addition on the reaction dynamics

Loading next page...
 
/lp/springer_journal/electron-transfer-reaction-of-4-4-bipyridine-with-triethylamine-in-3JVZqCAyId
Publisher
Brill Academic Publishers
Copyright
Copyright © 2003 by VSP 2003
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856703321328361
Publisher site
See Article on Publisher Site

Abstract

The photo-induced electron-transfer reaction of 4,4′-bipyridine (BPY) with triethylamine (TEA) in acetonitrile is studied by laser flash photolysis. The reaction mechanism and kinetics are found very sensitive to the presence of a small amount of water. At low water concentrations (i.e. <0.003 M), an extremely fast-rising metastable product is detected for the first time. A triplet charge transfer complex (3ECT) is found to be the primary intermediate preceding the electron transfer process. Up to about 0.1 M, water facilitates the electron transfer rate, whereas higher water concentrations retard the rate of electron transfer. The Stern-Volmer plot of the triplet decay rate versus the TEA concentration is consistent with the presence of 3ECT in equilibrium with the free excited triplet state of BPY.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off