Electron Transfer Dissociation of All Ions at All Times, MSETD, in a Quadrupole Time-of-Flight (Q-ToF) Mass Spectrometer

Electron Transfer Dissociation of All Ions at All Times, MSETD, in a Quadrupole Time-of-Flight... Data-independent mass spectral acquisition is particularly powerful when combined with ultra-performance liquid chromatography (LC) that provides excellent separation of most components present in a given sample. Data-independent analysis (DIA) consists of alternating full MS scans and scans with fragmentation of all ions within a selected m/z range, providing precursor masses and structure information, respectively. Fragmentation spectra are acquired either by sequential isolation and fragmentation of sliding m/z ranges or fragmenting all ions entering the MS instrument with no ion isolation, termed broadband DIA. Previously, broadband DIA has only been possible using collision induced dissociation (CID). Here, we report the use of electron transfer dissociation (ETD) as the fragmentation technique in broadband DIA instead of traditional collision induced dissociation (CID) during MSE. In this approach, which we refer to as MSETD, we implement the inherent benefits provided by ETD, such as discrimination of leucine and isoleucine, in a DIA setup. The combination of DIA analysis and ETD fragmentation with supplemental CID energy provides a powerful platform to obtain information on all precursors and their sequence from a single experiment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of The American Society for Mass Spectrometry Springer Journals

Electron Transfer Dissociation of All Ions at All Times, MSETD, in a Quadrupole Time-of-Flight (Q-ToF) Mass Spectrometer

Loading next page...
 
/lp/springer_journal/electron-transfer-dissociation-of-all-ions-at-all-times-msetd-in-a-7c2ONc6wcU
Publisher
Springer Journals
Copyright
Copyright © 2016 by American Society for Mass Spectrometry
Subject
Chemistry; Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics
ISSN
1044-0305
eISSN
1879-1123
D.O.I.
10.1007/s13361-016-1538-2
Publisher site
See Article on Publisher Site

Abstract

Data-independent mass spectral acquisition is particularly powerful when combined with ultra-performance liquid chromatography (LC) that provides excellent separation of most components present in a given sample. Data-independent analysis (DIA) consists of alternating full MS scans and scans with fragmentation of all ions within a selected m/z range, providing precursor masses and structure information, respectively. Fragmentation spectra are acquired either by sequential isolation and fragmentation of sliding m/z ranges or fragmenting all ions entering the MS instrument with no ion isolation, termed broadband DIA. Previously, broadband DIA has only been possible using collision induced dissociation (CID). Here, we report the use of electron transfer dissociation (ETD) as the fragmentation technique in broadband DIA instead of traditional collision induced dissociation (CID) during MSE. In this approach, which we refer to as MSETD, we implement the inherent benefits provided by ETD, such as discrimination of leucine and isoleucine, in a DIA setup. The combination of DIA analysis and ETD fragmentation with supplemental CID energy provides a powerful platform to obtain information on all precursors and their sequence from a single experiment.

Journal

Journal of The American Society for Mass SpectrometrySpringer Journals

Published: Dec 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off