Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electron transfer. 154. Reaction of the nitrosodisulfonate anion radical with one- and multi-electron inorganic reductants

Electron transfer. 154. Reaction of the nitrosodisulfonate anion radical with one- and... The nitrosodisulfonate anion radical, •NO(SO3)2 2-, a single electron oxidant, reacts cleanly with an array of metal-center reductants. Rates for substitution-labile species generally fall in the range 104 -105 M-1 s-1, both for le-[EuII, FeII(EDTA)] and 2e-(UIV, InI, GeII and SnII) reagents. The more weakly reducing donor VO2+ reacts more slowly (3 M-1 s-1 at 22°C) and the substitution-inert complex Fe(CN)6 4- still more sluggishly. Reductions with the non-metal related donors, azide, formate, hypophosphite, hyponitrite and H22AsO3 -, fall in the range 10-4 -10-2 M-1 s-1. Reactions yield the product HON(SO3)2 2-. Kinetic decay curves feature no irregularities reflecting formation or loss of one or more transients on a time scale comparable to that of the main conversion, indicating that the experimental rates pertaining to the 2e reductants and to hydrazine (a 4e reductant) are determined by the initial le transfer and that follow-up steps are rapid. The usual distinction between complementary and noncomplementary redox reactions applies poorly to reductions of •NO(SO3)2 2-. Rapid reductions require (1) an adequate potential difference, (2) the possibility of an inner-sphere path and (3) the availability of one or more nonbonding electrons at the reducing site. Substitution-labile metal-based reducing centers embracing a wide range of formal potentials, both le- and 2e- donors, may react speedily, although the latter group must operate in steps. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electron transfer. 154. Reaction of the nitrosodisulfonate anion radical with one- and multi-electron inorganic reductants

Loading next page...
1
 
/lp/springer_journal/electron-transfer-154-reaction-of-the-nitrosodisulfonate-anion-radical-TWe3CRew62

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2003 by VSP 2003
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1163/156856703321505076
Publisher site
See Article on Publisher Site

Abstract

The nitrosodisulfonate anion radical, •NO(SO3)2 2-, a single electron oxidant, reacts cleanly with an array of metal-center reductants. Rates for substitution-labile species generally fall in the range 104 -105 M-1 s-1, both for le-[EuII, FeII(EDTA)] and 2e-(UIV, InI, GeII and SnII) reagents. The more weakly reducing donor VO2+ reacts more slowly (3 M-1 s-1 at 22°C) and the substitution-inert complex Fe(CN)6 4- still more sluggishly. Reductions with the non-metal related donors, azide, formate, hypophosphite, hyponitrite and H22AsO3 -, fall in the range 10-4 -10-2 M-1 s-1. Reactions yield the product HON(SO3)2 2-. Kinetic decay curves feature no irregularities reflecting formation or loss of one or more transients on a time scale comparable to that of the main conversion, indicating that the experimental rates pertaining to the 2e reductants and to hydrazine (a 4e reductant) are determined by the initial le transfer and that follow-up steps are rapid. The usual distinction between complementary and noncomplementary redox reactions applies poorly to reductions of •NO(SO3)2 2-. Rapid reductions require (1) an adequate potential difference, (2) the possibility of an inner-sphere path and (3) the availability of one or more nonbonding electrons at the reducing site. Substitution-labile metal-based reducing centers embracing a wide range of formal potentials, both le- and 2e- donors, may react speedily, although the latter group must operate in steps.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 17, 2004

There are no references for this article.