Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force... The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I–V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10–190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5–18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electronic Materials Springer Journals

Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

Loading next page...
 
/lp/springer_journal/electromechanical-characterization-of-single-gan-nanobelt-probed-with-LOBEWqCnmI
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics
ISSN
0361-5235
eISSN
1543-186X
DOI
10.1007/s11664-018-6261-2
Publisher site
See Article on Publisher Site

Abstract

The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I–V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10–190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5–18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

Journal

Journal of Electronic MaterialsSpringer Journals

Published: Apr 2, 2018

References