Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electromagnetic scattering from large steady breaking waves

Electromagnetic scattering from large steady breaking waves A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Loading next page...
1
 
/lp/springer_journal/electromagnetic-scattering-from-large-steady-breaking-waves-bRLl43jFLB

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s003480000220
Publisher site
See Article on Publisher Site

Abstract

A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering.

Journal

Experiments in FluidsSpringer Journals

Published: May 7, 2001

There are no references for this article.