Electromagnetic scattering from large steady breaking waves

Electromagnetic scattering from large steady breaking waves A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Electromagnetic scattering from large steady breaking waves

Loading next page...
 
/lp/springer_journal/electromagnetic-scattering-from-large-steady-breaking-waves-bRLl43jFLB
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000220
Publisher site
See Article on Publisher Site

Abstract

A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering.

Journal

Experiments in FluidsSpringer Journals

Published: May 7, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off