Electrolytic Migration of Ag-Pd Alloy Wires with Various Pd Contents

Electrolytic Migration of Ag-Pd Alloy Wires with Various Pd Contents During Ag ion migration in an aqueous water drop covering a pair of parallel Ag-Pd wires under current stressing, hydrogen bubbles form first from the cathode, followed by the appearance of pure Ag dendrites on the cathodic wire. In this study, Ag dendrites with a diameter of 0.2–0.4 μm grew toward the anodic wire. The growth rate (v) of these dendrites decreased with the Pd content (c) with a linear relationship of: $$ v = 10.02 - 0.43 \, c $$ v = 10.02 - 0.43 c . Accompanying the growth of pure Ag dendrites was the formation of a continuous layer of crystallographic Ag2O particles on the surface of the anodic wire. The deposition of such insulating Ag2O products did not prevent the contact of Ag dendrites with the anodic Ag-Pd wire or the short circuit of the wire couple. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electronic Materials Springer Journals

Electrolytic Migration of Ag-Pd Alloy Wires with Various Pd Contents

Loading next page...
 
/lp/springer_journal/electrolytic-migration-of-ag-pd-alloy-wires-with-various-pd-contents-lt0xbwYrvj
Publisher
Springer US
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics
ISSN
0361-5235
eISSN
1543-186X
D.O.I.
10.1007/s11664-018-6210-0
Publisher site
See Article on Publisher Site

Abstract

During Ag ion migration in an aqueous water drop covering a pair of parallel Ag-Pd wires under current stressing, hydrogen bubbles form first from the cathode, followed by the appearance of pure Ag dendrites on the cathodic wire. In this study, Ag dendrites with a diameter of 0.2–0.4 μm grew toward the anodic wire. The growth rate (v) of these dendrites decreased with the Pd content (c) with a linear relationship of: $$ v = 10.02 - 0.43 \, c $$ v = 10.02 - 0.43 c . Accompanying the growth of pure Ag dendrites was the formation of a continuous layer of crystallographic Ag2O particles on the surface of the anodic wire. The deposition of such insulating Ag2O products did not prevent the contact of Ag dendrites with the anodic Ag-Pd wire or the short circuit of the wire couple.

Journal

Journal of Electronic MaterialsSpringer Journals

Published: Mar 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off