Electroluminescence mechanisms in SiO x N y (Si) nanocomposite films

Electroluminescence mechanisms in SiO x N y (Si) nanocomposite films With a view to creating the Si LED, the mechanisms of electroluminescence (EL) in SiOxNy(Si) nanocomposite films with Si nanocrystals embedded in the SiOxNy matrix are studied experimentally and theoretically. The most important results are obtained from a Au/SiOxNySi)/p-Si structure having a semitransparent electrode, the oxynitride film containing Si nanocrystals with a mean size of 3–5 nm and a concentration of ∼1018 cm−3; the measurements are made on a reverse-biased structure (substrate potential negative). Room-temperature EL is observed in the visible and IR ranges; the respective peaks are located at wavelengths of 600–700 and about 1200 nm. The study examines current-voltage characteristics of the structure and the dependence of integrated EL intensity on current, voltage, film thickness, the type of substrate conductivity, etc. The following conclusions are drawn from the experimental and theoretical results: The IR branch is mainly associated with carrier heating, avalanche ionization, and formation of light-emitting microplasmas near the substrate-film interface. The visible branch is linked to (i) hot-electron injection from the substrate into the film and (ii) impact excitation of luminescent centers at nanocrystal-matrix interfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Electroluminescence mechanisms in SiO x N y (Si) nanocomposite films

Loading next page...
 
/lp/springer_journal/electroluminescence-mechanisms-in-sio-x-n-y-si-nanocomposite-films-Xy4EnVJ7hC
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S106373970602003X
Publisher site
See Article on Publisher Site

Abstract

With a view to creating the Si LED, the mechanisms of electroluminescence (EL) in SiOxNy(Si) nanocomposite films with Si nanocrystals embedded in the SiOxNy matrix are studied experimentally and theoretically. The most important results are obtained from a Au/SiOxNySi)/p-Si structure having a semitransparent electrode, the oxynitride film containing Si nanocrystals with a mean size of 3–5 nm and a concentration of ∼1018 cm−3; the measurements are made on a reverse-biased structure (substrate potential negative). Room-temperature EL is observed in the visible and IR ranges; the respective peaks are located at wavelengths of 600–700 and about 1200 nm. The study examines current-voltage characteristics of the structure and the dependence of integrated EL intensity on current, voltage, film thickness, the type of substrate conductivity, etc. The following conclusions are drawn from the experimental and theoretical results: The IR branch is mainly associated with carrier heating, avalanche ionization, and formation of light-emitting microplasmas near the substrate-film interface. The visible branch is linked to (i) hot-electron injection from the substrate into the film and (ii) impact excitation of luminescent centers at nanocrystal-matrix interfaces.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 21, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off