Electrogenic activity of plasma membrane H+-ATPase in germinating male gametophyte of petunia and its stimulation by exogenous auxin: Mediatory role of calcium and reactive oxygen species

Electrogenic activity of plasma membrane H+-ATPase in germinating male gametophyte of petunia and... A lipophilic potential-sensitive cationic dye, safranin O was employed to examine the influence of exogenous IAA on plasma membrane electric potential in germinating pollen grains of petunia (Petunia hybrida L.) with the aim of elucidating whether the electrogenic H+-ATPase activity of the plasma membrane is sensitive to this phytohormone. The addition of IAA to pollen grains suspended in a K+-free medium was found to induce significant hyperpolarization of the plasmalemma. This effect was fully blocked by orthovanadate, Ca2+-active reagents (EGTA and verapamil), and by the inhibitor of NADPH oxidase of plasmalemma, diphenyleneiodonium (DPI). It was also strongly inhibited by the presence of K+ at centimolar concentrations in the medium. The hyperpolarizing influence of IAA was mimicked by application of hydrogen peroxide; furthermore, the H2O2-induced shift of the membrane potential was inhibited by the same agents that suppressed the IAA-induced hyperpolarization of the pollen plasmalemma. It is concluded that the IAAinduced hyperpolarization of the plasma membrane in male gametophytes of petunia is caused by the enhanced electrogenic activity of ATP-dependent proton pump in the presence of this phytohormone. It is supposed that the effect of IAA is mediated by the transient increase in cytosolic Ca2+ level and by generation of reactive oxygen species (ROS). Possible mechanisms underlying the mediatory role of calcium and ROS in the auxin signal transduction and the resulting stimulation of electrogenic activity of the plasma membrane H+-ATPase are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Electrogenic activity of plasma membrane H+-ATPase in germinating male gametophyte of petunia and its stimulation by exogenous auxin: Mediatory role of calcium and reactive oxygen species

Loading next page...
 
/lp/springer_journal/electrogenic-activity-of-plasma-membrane-h-atpase-in-germinating-male-HfVDGZef7x
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371003012X
Publisher site
See Article on Publisher Site

Abstract

A lipophilic potential-sensitive cationic dye, safranin O was employed to examine the influence of exogenous IAA on plasma membrane electric potential in germinating pollen grains of petunia (Petunia hybrida L.) with the aim of elucidating whether the electrogenic H+-ATPase activity of the plasma membrane is sensitive to this phytohormone. The addition of IAA to pollen grains suspended in a K+-free medium was found to induce significant hyperpolarization of the plasmalemma. This effect was fully blocked by orthovanadate, Ca2+-active reagents (EGTA and verapamil), and by the inhibitor of NADPH oxidase of plasmalemma, diphenyleneiodonium (DPI). It was also strongly inhibited by the presence of K+ at centimolar concentrations in the medium. The hyperpolarizing influence of IAA was mimicked by application of hydrogen peroxide; furthermore, the H2O2-induced shift of the membrane potential was inhibited by the same agents that suppressed the IAA-induced hyperpolarization of the pollen plasmalemma. It is concluded that the IAAinduced hyperpolarization of the plasma membrane in male gametophytes of petunia is caused by the enhanced electrogenic activity of ATP-dependent proton pump in the presence of this phytohormone. It is supposed that the effect of IAA is mediated by the transient increase in cytosolic Ca2+ level and by generation of reactive oxygen species (ROS). Possible mechanisms underlying the mediatory role of calcium and ROS in the auxin signal transduction and the resulting stimulation of electrogenic activity of the plasma membrane H+-ATPase are discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 9, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off