Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes

Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes Specific features of the electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes based on iron(III) sulfate in the dc mode and with a unipolar pulsed current were studied. It was shown that varying the relative concentrations of salts of alloy-forming metals and the solution pH makes it possible to obtain lustrous compact coatings with low porosity and various contents of high-melting components. The effect of temperature on the coating composition and current efficiency was examined. The current density ranges providing high electrolysis efficiency were found and it was demonstrated that using a pulsed current favors formation of more compositionally homogeneous surface layers at a smaller amount of adsorbed nonmetallic impurities in the coatings. The iron–molybdenum–tungsten coatings are X-ray-amorphous and have better physicomechanical properties and corrosion resistance as compared with the base, which makes it possible to recommend these coatings for application in techniques for surface reinforcement and restoration of worn-out articles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes

Loading next page...
 
/lp/springer_journal/electrodeposition-of-iron-molybdenum-tungsten-coatings-from-citrate-7kR9qYVf0b
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427215011018X
Publisher site
See Article on Publisher Site

Abstract

Specific features of the electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes based on iron(III) sulfate in the dc mode and with a unipolar pulsed current were studied. It was shown that varying the relative concentrations of salts of alloy-forming metals and the solution pH makes it possible to obtain lustrous compact coatings with low porosity and various contents of high-melting components. The effect of temperature on the coating composition and current efficiency was examined. The current density ranges providing high electrolysis efficiency were found and it was demonstrated that using a pulsed current favors formation of more compositionally homogeneous surface layers at a smaller amount of adsorbed nonmetallic impurities in the coatings. The iron–molybdenum–tungsten coatings are X-ray-amorphous and have better physicomechanical properties and corrosion resistance as compared with the base, which makes it possible to recommend these coatings for application in techniques for surface reinforcement and restoration of worn-out articles.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Feb 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off