Electrodeposition of Co–W coatings from boron gluconate electrolyte with a soluble tungsten anode

Electrodeposition of Co–W coatings from boron gluconate electrolyte with a soluble tungsten anode Conditions were determined in which an active anodic dissolution of tungsten is observed in a borongluconate electrolyte used to obtain Co–W coatings (pH ~6.5) and the nature of critical currents of transition to the passivation was found, which makes it possible to use the tungsten anode as a soluble electrode. The anodic dissolution of tungsten occurs under these conditions with a current efficiency of 90–100%, which, in contrast to the case of a graphite anode, does not lead to an additional oxidation of the electrolyte components and polymerization in solution; in combination with the decrease in the concentration of tungstate ions, this reduces the electrolyte performance. It was shown that the use of a soluble tungsten anode in obtaining nanocrystalline cobalt–tungsten coating can improve the electrolyte performance due to the rise in the current efficiency of electrodeposition and to the increase in the microhardness of the coatings in comparison with the case of an insoluble graphite anode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Electrodeposition of Co–W coatings from boron gluconate electrolyte with a soluble tungsten anode

Loading next page...
 
/lp/springer_journal/electrodeposition-of-co-w-coatings-from-boron-gluconate-electrolyte-NXrs0Xa4AO
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S107042721609007X
Publisher site
See Article on Publisher Site

Abstract

Conditions were determined in which an active anodic dissolution of tungsten is observed in a borongluconate electrolyte used to obtain Co–W coatings (pH ~6.5) and the nature of critical currents of transition to the passivation was found, which makes it possible to use the tungsten anode as a soluble electrode. The anodic dissolution of tungsten occurs under these conditions with a current efficiency of 90–100%, which, in contrast to the case of a graphite anode, does not lead to an additional oxidation of the electrolyte components and polymerization in solution; in combination with the decrease in the concentration of tungstate ions, this reduces the electrolyte performance. It was shown that the use of a soluble tungsten anode in obtaining nanocrystalline cobalt–tungsten coating can improve the electrolyte performance due to the rise in the current efficiency of electrodeposition and to the increase in the microhardness of the coatings in comparison with the case of an insoluble graphite anode.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Jan 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off