Electrocoupling of Ion Transporters in Plants: Interaction with Internal Ion Concentrations

Electrocoupling of Ion Transporters in Plants: Interaction with Internal Ion Concentrations There are five major electroenzymes in the plasmalemma of plant cells: a driving electrogenic pump, inward and outward rectifying K+ channels, a Cl−-2H+ symporter, and Cl−-channels. It has been demonstrated previously (Gradmann, Blatt & Thiel 1993, J. Membrane Biol. 136:327–332) how voltage-gating of these electroenzymes causes oscillations of the transmembrane voltage (V) at constant substrate concentrations. The purpose of this study is to examine the interaction of the same transporter ensemble with cytoplasmic concentrations of K+ and Cl−. The former model system has been extended to account for changing internal concentrations. Constant-field theory has been applied to describe the influence of ion concentrations on current-voltage relationships of the active channels. The extended model is investigated using a reference set of model parameters. In this configuration, the system converges to stable slow oscillations with intrinsic changes in cytoplasmic K+ and Cl− concentrations. These slow oscillations reflect alternation between a state of salt uptake at steady negative values of V and a state of net salt loss at rapidly oscillating V, the latter being analogous to the previously reported oscillations. By switching off either concentration changes or gating, it is demonstrated that the fast oscillations are mostly due to the gating properties of the Cl− channel, whereas the slow oscillations are controlled by the effect of the Cl− concentration on the current. The sensitivity of output results y (e.g., frequency of oscillations) to changes of the model parameters x (e.g., maximum Cl− conductance) has been investigated for the reference system. Further examples are presented where some larger changes of specific model parameters cause fundamentally different behavior, e.g., convergence towards a stable state of only the fast oscillations without intrinsic concentration changes, or to a steady-state without any oscillations. The main and general result of this study is that the osmotic status of a plant cell is stabilized by the ensemble of familiar electroenzymes through oscillatory interactions with the internal concentrations of the most abundant ions. This convergent behavior of the stand-alone system is an important prerequisite for osmotic regulation by means of other physiological mechanisms, like second messengers and gating modifiers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Electrocoupling of Ion Transporters in Plants: Interaction with Internal Ion Concentrations

Loading next page...
 
/lp/springer_journal/electrocoupling-of-ion-transporters-in-plants-interaction-with-11Wn2QdSLl
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900446
Publisher site
See Article on Publisher Site

Abstract

There are five major electroenzymes in the plasmalemma of plant cells: a driving electrogenic pump, inward and outward rectifying K+ channels, a Cl−-2H+ symporter, and Cl−-channels. It has been demonstrated previously (Gradmann, Blatt & Thiel 1993, J. Membrane Biol. 136:327–332) how voltage-gating of these electroenzymes causes oscillations of the transmembrane voltage (V) at constant substrate concentrations. The purpose of this study is to examine the interaction of the same transporter ensemble with cytoplasmic concentrations of K+ and Cl−. The former model system has been extended to account for changing internal concentrations. Constant-field theory has been applied to describe the influence of ion concentrations on current-voltage relationships of the active channels. The extended model is investigated using a reference set of model parameters. In this configuration, the system converges to stable slow oscillations with intrinsic changes in cytoplasmic K+ and Cl− concentrations. These slow oscillations reflect alternation between a state of salt uptake at steady negative values of V and a state of net salt loss at rapidly oscillating V, the latter being analogous to the previously reported oscillations. By switching off either concentration changes or gating, it is demonstrated that the fast oscillations are mostly due to the gating properties of the Cl− channel, whereas the slow oscillations are controlled by the effect of the Cl− concentration on the current. The sensitivity of output results y (e.g., frequency of oscillations) to changes of the model parameters x (e.g., maximum Cl− conductance) has been investigated for the reference system. Further examples are presented where some larger changes of specific model parameters cause fundamentally different behavior, e.g., convergence towards a stable state of only the fast oscillations without intrinsic concentration changes, or to a steady-state without any oscillations. The main and general result of this study is that the osmotic status of a plant cell is stabilized by the ensemble of familiar electroenzymes through oscillatory interactions with the internal concentrations of the most abundant ions. This convergent behavior of the stand-alone system is an important prerequisite for osmotic regulation by means of other physiological mechanisms, like second messengers and gating modifiers.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 2, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off