Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g−1 at scan rate of 5 mV s−1 and 553 F g−1 at current density of 1 A g−1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg−1 at specific power of 2.16 kW kg−1, and retained 93.01% specific capacitance at current density of 1 A g−1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electronic Materials Springer Journals

Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

Loading next page...
 
/lp/springer_journal/electrochemical-supercapacitive-performance-of-spray-deposited-nio-62jH6ImOaV
Publisher
Springer US
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics
ISSN
0361-5235
eISSN
1543-186X
D.O.I.
10.1007/s11664-018-6243-4
Publisher site
See Article on Publisher Site

Abstract

Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g−1 at scan rate of 5 mV s−1 and 553 F g−1 at current density of 1 A g−1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg−1 at specific power of 2.16 kW kg−1, and retained 93.01% specific capacitance at current density of 1 A g−1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

Journal

Journal of Electronic MaterialsSpringer Journals

Published: Apr 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off