Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler

Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium... In this study, the composite polymer electrolytes (CPEs) were prepared by solution casting technique. The CPEs consisted of PEO/PMMA blend as a host matrix doped with LiClO4. Propylene carbonate (PC) was used as plasticizer and a small amount of imidazolium salt-supported amorphous silica (IS-AS) as a filler was prepared by the sol–gel method. At room temperature, the highest conductivity was obtained for the composition having PEO–PMMA–LiClO4–PC–4wt. % IS-AS with a value of 1.15 × 10−4 S/cm. In particular, the CPE using the IS-AS filler showed a higher conductivity than any other sample (fumed silica, amorphous silica). Studies of differential scanning calorimetry and scanning electron microscopy indicated that the ionic conductivity increase was due to an expansion in the amorphous phase which enhances the flexibility of polymeric chains and the homogeneous structure of CPEs. It was found that the ionic conductivity and interfacial resistance stability of CPEs was significantly improved by the addition of IS-AS. In other words, the resistance stability and maximum ambient ionic conductivity of CPEs containing IS-AS filler were better than CPEs containing any other filler. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler

Loading next page...
 
/lp/springer_journal/electrochemical-properties-of-peo-pmma-blend-based-polymer-CU0dvqXxrG
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0839-8
Publisher site
See Article on Publisher Site

Abstract

In this study, the composite polymer electrolytes (CPEs) were prepared by solution casting technique. The CPEs consisted of PEO/PMMA blend as a host matrix doped with LiClO4. Propylene carbonate (PC) was used as plasticizer and a small amount of imidazolium salt-supported amorphous silica (IS-AS) as a filler was prepared by the sol–gel method. At room temperature, the highest conductivity was obtained for the composition having PEO–PMMA–LiClO4–PC–4wt. % IS-AS with a value of 1.15 × 10−4 S/cm. In particular, the CPE using the IS-AS filler showed a higher conductivity than any other sample (fumed silica, amorphous silica). Studies of differential scanning calorimetry and scanning electron microscopy indicated that the ionic conductivity increase was due to an expansion in the amorphous phase which enhances the flexibility of polymeric chains and the homogeneous structure of CPEs. It was found that the ionic conductivity and interfacial resistance stability of CPEs was significantly improved by the addition of IS-AS. In other words, the resistance stability and maximum ambient ionic conductivity of CPEs containing IS-AS filler were better than CPEs containing any other filler.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 10, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off