Electrochemical machining of deep narrow slits on TB6 titanium alloys

Electrochemical machining of deep narrow slits on TB6 titanium alloys Deep narrow slits of titanium alloys are extensively used in the aerospace industry. Electrochemical machining (ECM) is suitable for fabricating deep narrow slits owing to its advantages such as no tool wear, no residual stress, and no thermal stress. However, the machining surface of titanium alloy is prone to passivation, and the pitting is prone to generating on the non-machined surface, which restricts forming precision enhancement. In this study, the electrochemical dissolution characteristics of TB6 titanium alloy were investigated using the method of electrolyte lateral flow, and the experiments of the deep narrow slit machining were also conducted on the basis of the self-developed vibration apparatus. The results reveal that the mixed electrolyte composed of NaCl and NaNO3 is capable of enhancing the current efficiency and surface quality of TB6 titanium alloy. Moreover, the average slit width at the entrance of the deep narrow slit is limited at 2.48 mm, and the average slit width in the depth direction is limited at 2.67 mm using the method of vibration superimposed on the high-speed linear feeding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Electrochemical machining of deep narrow slits on TB6 titanium alloys

Loading next page...
 
/lp/springer_journal/electrochemical-machining-of-deep-narrow-slits-on-tb6-titanium-alloys-0ZvBC7cDX0
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0392-0
Publisher site
See Article on Publisher Site

Abstract

Deep narrow slits of titanium alloys are extensively used in the aerospace industry. Electrochemical machining (ECM) is suitable for fabricating deep narrow slits owing to its advantages such as no tool wear, no residual stress, and no thermal stress. However, the machining surface of titanium alloy is prone to passivation, and the pitting is prone to generating on the non-machined surface, which restricts forming precision enhancement. In this study, the electrochemical dissolution characteristics of TB6 titanium alloy were investigated using the method of electrolyte lateral flow, and the experiments of the deep narrow slit machining were also conducted on the basis of the self-developed vibration apparatus. The results reveal that the mixed electrolyte composed of NaCl and NaNO3 is capable of enhancing the current efficiency and surface quality of TB6 titanium alloy. Moreover, the average slit width at the entrance of the deep narrow slit is limited at 2.48 mm, and the average slit width in the depth direction is limited at 2.67 mm using the method of vibration superimposed on the high-speed linear feeding.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off