Electrochemical and surface analytical studies of carbon steel protected from corrosion in a low-chloride environment containing a phosphonate-based inhibitor

Electrochemical and surface analytical studies of carbon steel protected from corrosion in a... Electrochemical and surface analytical techniques have been used to study carbon steel protected from corrosion by use of a new ternary inhibitor formulation containing nitrilotris(methylenephosphonic acid) (NTMP), zinc ions, and nicotinic acid (NA). Potentiodynamic polarization studies indicate that the ternary inhibitor acts as a mixed-type inhibitor. Electrochemical impedance studies imply formation of a protective film at the metal–solution interface. Surface analysis by X-ray photoelectron spectroscopy (XPS) showed that the protective surface film contains Fe, Zn, P, N, C, and O. On the basis of shifts in the binding energies of these elements, it is inferred that the protective film comprises a multiligand complex, Fe(III), Zn(II)–NTMP–NA, Zn(OH)2, and smaller quantities of oxides and/or hydroxides of iron. Analysis of the protective film by Fourier-transform infrared spectroscopy also supports this interpretation of the XPS results. Surface morphology and topography were studied by scanning electron microscopy and atomic force microscopy, respectively. On the basis of the results from all these studies, a plausible mechanism for inhibition of corrosion by the formulation is proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electrochemical and surface analytical studies of carbon steel protected from corrosion in a low-chloride environment containing a phosphonate-based inhibitor

Loading next page...
 
/lp/springer_journal/electrochemical-and-surface-analytical-studies-of-carbon-steel-V96DbdsUSL
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1584-y
Publisher site
See Article on Publisher Site

Abstract

Electrochemical and surface analytical techniques have been used to study carbon steel protected from corrosion by use of a new ternary inhibitor formulation containing nitrilotris(methylenephosphonic acid) (NTMP), zinc ions, and nicotinic acid (NA). Potentiodynamic polarization studies indicate that the ternary inhibitor acts as a mixed-type inhibitor. Electrochemical impedance studies imply formation of a protective film at the metal–solution interface. Surface analysis by X-ray photoelectron spectroscopy (XPS) showed that the protective surface film contains Fe, Zn, P, N, C, and O. On the basis of shifts in the binding energies of these elements, it is inferred that the protective film comprises a multiligand complex, Fe(III), Zn(II)–NTMP–NA, Zn(OH)2, and smaller quantities of oxides and/or hydroxides of iron. Analysis of the protective film by Fourier-transform infrared spectroscopy also supports this interpretation of the XPS results. Surface morphology and topography were studied by scanning electron microscopy and atomic force microscopy, respectively. On the basis of the results from all these studies, a plausible mechanism for inhibition of corrosion by the formulation is proposed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 25, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off