Electroanalytical studies of the corrosion-protection properties of 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) on mild steel in 0.5N sulfuric acid

Electroanalytical studies of the corrosion-protection properties of... Inhibition of the corrosion of mild steel in aerated 0.5 N H2SO4 solution by 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) was investigated by use of potentiodynamic polarization (Tafel), electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effects on the rate of corrosion of inhibitor concentration, temperature, extent of surface coverage, adsorption kinetics, and surface morphology were investigated. Inhibition efficiency increased markedly with increasing ATD concentration and decreased slightly with increasing temperature. The presence of ATD reduced the capacitance of the double layer and increased the charge-transfer resistance. Values of the activation energy (E a) and of the thermodynamic data adsorption equilibrium constant (K ads) and free energy of adsorption (ΔG ads) were computed from the temperature dependence of the corrosion current. The inhibitor molecule first became adsorbed on the mild steel surface, obeying the Langmuir adsorption isotherm, and substantially reduced the rate of corrosion. Results of electroanalytical studies revealed that ATD acts as a mixed-type inhibitor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electroanalytical studies of the corrosion-protection properties of 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) on mild steel in 0.5N sulfuric acid

Loading next page...
 
/lp/springer_journal/electroanalytical-studies-of-the-corrosion-protection-properties-of-4-fnj8qZMg4b
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0468-7
Publisher site
See Article on Publisher Site

Abstract

Inhibition of the corrosion of mild steel in aerated 0.5 N H2SO4 solution by 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) was investigated by use of potentiodynamic polarization (Tafel), electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effects on the rate of corrosion of inhibitor concentration, temperature, extent of surface coverage, adsorption kinetics, and surface morphology were investigated. Inhibition efficiency increased markedly with increasing ATD concentration and decreased slightly with increasing temperature. The presence of ATD reduced the capacitance of the double layer and increased the charge-transfer resistance. Values of the activation energy (E a) and of the thermodynamic data adsorption equilibrium constant (K ads) and free energy of adsorption (ΔG ads) were computed from the temperature dependence of the corrosion current. The inhibitor molecule first became adsorbed on the mild steel surface, obeying the Langmuir adsorption isotherm, and substantially reduced the rate of corrosion. Results of electroanalytical studies revealed that ATD acts as a mixed-type inhibitor.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 27, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off