Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres

Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL... The electrical conductivity of biodegradable polymeric scaffolds has shown promising results in tissue engineering, particularly for electrically excitable tissues such as muscles and nerves. Herein, we demonstrate a novel processing approach to produce electroactive nanofibres. Electrically conducting, robust nanofibres comprising both a biodegradable component using poly(ε-caprolactone) (PCL) and a conducting component, polypyrrole (PPy), have been produced by electrospinning and vapour phase polymerization. The PCL/PPy nanofibres were characterised in terms of morphology, electrical conductivity, and dimensional stability. The as-prepared nanofibres were found to be cytocompatible with good electrical conductivity and mechanical properties. It was found that electrical conductivity of the PPy coated PCL nanofibre was 1.9 S/cm, which is much higher than that of PCL mixed with PPy in other studies. Cell viability on the scaffolds were firstly examined by in vitro culturing the L929 fibroblast cells for 24 h, revealing viability of 97.6 ± 2.7 %. Then PC12 cells differentiation observed by neurite outgrowth which occurred after 4 days of culture on the scaffolds. Significantly larger areas of the PPy coated PCL were covered by cells compared to PCL without coating. The obtained results from filament staining suggested the high potentials of the conducting scaffold for use in neural tissue engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres

Loading next page...
 
/lp/springer_journal/electroactive-nanostructured-scaffold-produced-by-controlled-TqLpBk0LlM
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2695-4
Publisher site
See Article on Publisher Site

Abstract

The electrical conductivity of biodegradable polymeric scaffolds has shown promising results in tissue engineering, particularly for electrically excitable tissues such as muscles and nerves. Herein, we demonstrate a novel processing approach to produce electroactive nanofibres. Electrically conducting, robust nanofibres comprising both a biodegradable component using poly(ε-caprolactone) (PCL) and a conducting component, polypyrrole (PPy), have been produced by electrospinning and vapour phase polymerization. The PCL/PPy nanofibres were characterised in terms of morphology, electrical conductivity, and dimensional stability. The as-prepared nanofibres were found to be cytocompatible with good electrical conductivity and mechanical properties. It was found that electrical conductivity of the PPy coated PCL nanofibre was 1.9 S/cm, which is much higher than that of PCL mixed with PPy in other studies. Cell viability on the scaffolds were firstly examined by in vitro culturing the L929 fibroblast cells for 24 h, revealing viability of 97.6 ± 2.7 %. Then PC12 cells differentiation observed by neurite outgrowth which occurred after 4 days of culture on the scaffolds. Significantly larger areas of the PPy coated PCL were covered by cells compared to PCL without coating. The obtained results from filament staining suggested the high potentials of the conducting scaffold for use in neural tissue engineering.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off