Electro-catalytic performance of Pt-supported poly (o-phenylenediamine) microrods for methanol oxidation reaction

Electro-catalytic performance of Pt-supported poly (o-phenylenediamine) microrods for methanol... Poly (o-phenylenediamine) (PoPD) microrods were obtained by interfacial polymerization using ferric chloride as oxidant and without any template or functional dopant. Pt/PoPD nanocatalysts were prepared by the reduction of chloroplatinic acid with sodium borohydride, and the composite catalysts formed were characterized by X-ray diffraction and electrochemical methods. The nanocomposite of Pt/PoPD microrods has been explored for their electro-catalytic performance towards oxidation of methanol. The electro-catalytic activity of Pt/PoPD was found to be much higher (current density 1.96 mA/cm2 at 0.70 V) in comparison to Pt/Vulcan electrodes (the current density values of 1.56 mA/cm2 at 0.71 V) which may be attributed to the microrod morphology of PoPD that facilitate the effective dispersion of Pt particles and easier access of methanol towards the catalytic sites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electro-catalytic performance of Pt-supported poly (o-phenylenediamine) microrods for methanol oxidation reaction

Loading next page...
1
 
/lp/springer_journal/electro-catalytic-performance-of-pt-supported-poly-o-phenylenediamine-sCjRiKV9rP
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0354-3
Publisher site
See Article on Publisher Site

Abstract

Poly (o-phenylenediamine) (PoPD) microrods were obtained by interfacial polymerization using ferric chloride as oxidant and without any template or functional dopant. Pt/PoPD nanocatalysts were prepared by the reduction of chloroplatinic acid with sodium borohydride, and the composite catalysts formed were characterized by X-ray diffraction and electrochemical methods. The nanocomposite of Pt/PoPD microrods has been explored for their electro-catalytic performance towards oxidation of methanol. The electro-catalytic activity of Pt/PoPD was found to be much higher (current density 1.96 mA/cm2 at 0.70 V) in comparison to Pt/Vulcan electrodes (the current density values of 1.56 mA/cm2 at 0.71 V) which may be attributed to the microrod morphology of PoPD that facilitate the effective dispersion of Pt particles and easier access of methanol towards the catalytic sites.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 4, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off