Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified counter electrode in dye sensitized solar cells

Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified... DNA templated gold wires (AuWs) were fabricated on Pt sputtered ITO (Pt/ITO) substrates using ‘scribing’ or ‘writing’ method to be used as a modified counter electrode (CE) in Dye sensitized solar cells. The gold nanoparticles (AuNPs) bind to DNA in aqueous solution due to the polyanionic nature of DNA. When a scribe is made on the dropcasted Au-DNA solution, the diffusion of Au-DNA complex occurs towards the edges of the scribe due to the coffee ring effect. Capillary force induces evaporation of water that also forces the Au-DNA complex to migrate towards the scribed edges. Meanwhile, the AuNPs are reduced on the surface of DNA to form active seed for nucleation and growth of AuWs. DNA molecules act as a scaffold to arrange the nanoparticles into well-connected submicron to nanoscale wires. The cyclic voltammetry measurements showed that AuWs/Pt/ITO CE exhibited better electro-catalytic activity and higher conductivity than conventional Pt/ITO CE due to the synergistic effect of Pt and AuWs network on ITO. The DSSC fabricated using TiO2 photoanode, N719 dye, I3 −/I− electrolyte and AuWs/Pt/ITO CE showed a 36% increase in efficiency as compared to the cells made under same parameters but using conventional (Pt/ITO) CE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified counter electrode in dye sensitized solar cells

Loading next page...
 
/lp/springer_journal/electro-catalytic-and-structural-studies-of-dna-templated-gold-wires-0hGlPYcS7O
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8411-3
Publisher site
See Article on Publisher Site

Abstract

DNA templated gold wires (AuWs) were fabricated on Pt sputtered ITO (Pt/ITO) substrates using ‘scribing’ or ‘writing’ method to be used as a modified counter electrode (CE) in Dye sensitized solar cells. The gold nanoparticles (AuNPs) bind to DNA in aqueous solution due to the polyanionic nature of DNA. When a scribe is made on the dropcasted Au-DNA solution, the diffusion of Au-DNA complex occurs towards the edges of the scribe due to the coffee ring effect. Capillary force induces evaporation of water that also forces the Au-DNA complex to migrate towards the scribed edges. Meanwhile, the AuNPs are reduced on the surface of DNA to form active seed for nucleation and growth of AuWs. DNA molecules act as a scaffold to arrange the nanoparticles into well-connected submicron to nanoscale wires. The cyclic voltammetry measurements showed that AuWs/Pt/ITO CE exhibited better electro-catalytic activity and higher conductivity than conventional Pt/ITO CE due to the synergistic effect of Pt and AuWs network on ITO. The DSSC fabricated using TiO2 photoanode, N719 dye, I3 −/I− electrolyte and AuWs/Pt/ITO CE showed a 36% increase in efficiency as compared to the cells made under same parameters but using conventional (Pt/ITO) CE.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Dec 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off