Electrical imaging of soil water availability to grapevine: a benchmark experiment of several machine-learning techniques

Electrical imaging of soil water availability to grapevine: a benchmark experiment of several... Electrical resistivity (ER) can be used to assess soil water in the field. This study investigated the possibility of extending the use of ER to measure plant available soil water variables, i.e. available soil water (ASW), total transpirable SW (TTSW), and fraction of transpirable SW (FTSW) using a pedotransfer approach. In a vineyard, 224 electrical resistivity tomography (ERT) transects and 672 time domain reflectometry (TDR) soil water profiles were acquired over 2 years. Soil physical–chemical properties were measured on 73 soil samples from eight different sites. To estimate the amount of soil water available to plants, grapevine (Vitis vinifera L.) water status was monitored by means of leaf water potentials. A benchmark experiment was carried out to compare four machine-learning techniques: multivariate adaptive regression splines (MARS), k-nearest neighbours (KNN), random forest (RF), and gradient boosting machine (GBM). Model interpretation led to a deeper understanding of the relationships between electrical resistivity and soil properties when predicting soil water availability for the plant. The models assessed had good predictive performance and were therefore used to map ASW, TTSW and FTSW in the vineyard. ER coupled to machine-learning algorithms was shown to be a good proxy for quantification and visualisation of plant available soil water with low disturbance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Electrical imaging of soil water availability to grapevine: a benchmark experiment of several machine-learning techniques

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial