Electrical double-layer capacitor performance of nitrogen-doped ordered mesoporous carbon prepared by nanotemplating method

Electrical double-layer capacitor performance of nitrogen-doped ordered mesoporous carbon... In this work, the electrical double-layer capacitive properties of nitrogen-doped ordered mesoporous carbons (N-OMCs) were investigated. Ordered mesoporous carbons (OMCs) with 3D body-centered Ia3d structure has been prepared by KIT-6 mesoporous silica as a hard template with aniline for N-OMC and sucrose for Su-OMC as a carbon precursor. Using the different carbon precursor, moderate amounts of nitrogen atoms could be doped to the OMC structures. The obtained materials were characterized by powder X-ray diffraction (XRD), nitrogen adsorption isotherms at 77 K, elemental analysis, and X-ray photoelectron spectroscopy (XPS). Prepared OMCs had mesopore properties such as a high surface area with narrow pore-size distribution. From cyclic voltammograms (CVs) test, N-OMC compared to Su-OMC exhibit higher capacitance and fast charge/discharge characteristics, which results from their pseudo-capacitive effect of incorporated nitrogen atoms. It was thought that N-OMC prepared by the nanotemplating method with KIT-6 and aniline were suitable electrode materials for electrical double-layer capacitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Electrical double-layer capacitor performance of nitrogen-doped ordered mesoporous carbon prepared by nanotemplating method

Loading next page...
 
/lp/springer_journal/electrical-double-layer-capacitor-performance-of-nitrogen-doped-ADw0Hxvdtt
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0172-z
Publisher site
See Article on Publisher Site

Abstract

In this work, the electrical double-layer capacitive properties of nitrogen-doped ordered mesoporous carbons (N-OMCs) were investigated. Ordered mesoporous carbons (OMCs) with 3D body-centered Ia3d structure has been prepared by KIT-6 mesoporous silica as a hard template with aniline for N-OMC and sucrose for Su-OMC as a carbon precursor. Using the different carbon precursor, moderate amounts of nitrogen atoms could be doped to the OMC structures. The obtained materials were characterized by powder X-ray diffraction (XRD), nitrogen adsorption isotherms at 77 K, elemental analysis, and X-ray photoelectron spectroscopy (XPS). Prepared OMCs had mesopore properties such as a high surface area with narrow pore-size distribution. From cyclic voltammograms (CVs) test, N-OMC compared to Su-OMC exhibit higher capacitance and fast charge/discharge characteristics, which results from their pseudo-capacitive effect of incorporated nitrogen atoms. It was thought that N-OMC prepared by the nanotemplating method with KIT-6 and aniline were suitable electrode materials for electrical double-layer capacitors.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 18, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off