Electrical Conductance of Cell-to-Cell Junctions and the Cytoskeleton of Plant Cells

Electrical Conductance of Cell-to-Cell Junctions and the Cytoskeleton of Plant Cells In the submerged trichomes of floating-moss (Salvinia auriculataAubl.) and the roots of the higher water plant Trianea bogotensisKarst., the dependence of the electrical resistance of intercellular junctions on the presence of the agents that destroy microfilaments (cytochalasin B) and microtubules (colchicine) was investigated using the microelectrode technique. The resistance of the junctions (R c) was estimated taking into account the input resistance and the coefficient of intercellular electrical communication. Should the cells be connected via symplast, R cwill describe the resistance of plasmodesmata. Cytochalasin B (3–30 μg/ml) reversibly changed R cduring the first minutes after application. The extent of the change depended on the concentration of the inhibitor; its character of action depended on the initial strength of intercellular communication. When the initial conductance of the contact was high, cytochalasin B elevated the resistance; when it was low, the inhibitor decreased it. In all the experiments, cytochalasin B reduced the input resistance (R i) that suggests the dependence of plasma membrane resistance on actin cytoskeleton. The effect of colchicine (0.1–1.0 mM) on R iand R cwas observed only when the cellular membrane was hyperpolarized or after a prolonged action of the inhibitor (for about 0.5 h). It was concluded that the electrical conductance of plasmodesmata and plasma membrane depended on the state of actin cytoskeleton. A complex and probably mediated interaction of microtubules with the processes affecting these characteristics of the cells was suggested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Electrical Conductance of Cell-to-Cell Junctions and the Cytoskeleton of Plant Cells

Loading next page...
 
/lp/springer_journal/electrical-conductance-of-cell-to-cell-junctions-and-the-cytoskeleton-m0whVYjsHO
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1012548206362
Publisher site
See Article on Publisher Site

Abstract

In the submerged trichomes of floating-moss (Salvinia auriculataAubl.) and the roots of the higher water plant Trianea bogotensisKarst., the dependence of the electrical resistance of intercellular junctions on the presence of the agents that destroy microfilaments (cytochalasin B) and microtubules (colchicine) was investigated using the microelectrode technique. The resistance of the junctions (R c) was estimated taking into account the input resistance and the coefficient of intercellular electrical communication. Should the cells be connected via symplast, R cwill describe the resistance of plasmodesmata. Cytochalasin B (3–30 μg/ml) reversibly changed R cduring the first minutes after application. The extent of the change depended on the concentration of the inhibitor; its character of action depended on the initial strength of intercellular communication. When the initial conductance of the contact was high, cytochalasin B elevated the resistance; when it was low, the inhibitor decreased it. In all the experiments, cytochalasin B reduced the input resistance (R i) that suggests the dependence of plasma membrane resistance on actin cytoskeleton. The effect of colchicine (0.1–1.0 mM) on R iand R cwas observed only when the cellular membrane was hyperpolarized or after a prolonged action of the inhibitor (for about 0.5 h). It was concluded that the electrical conductance of plasmodesmata and plasma membrane depended on the state of actin cytoskeleton. A complex and probably mediated interaction of microtubules with the processes affecting these characteristics of the cells was suggested.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off