Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control

Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma... The present paper is a wide review on AC surface dielectric barrier discharge (DBD) actuators applied to airflow control. Both electrical and mechanical characteristics of surface DBD are presented and discussed. The first half of the present paper gives the last results concerning typical single plate-to-plate surface DBDs supplied by a sine high voltage. The discharge current, the plasma extension and its morphology are firstly analyzed. Then, time-averaged and time-resolved measurements of the produced electrohydrodynamic force and of the resulting electric wind are commented. The second half of the paper concerns a partial list of approaches having demonstrated a significant modification in the discharge behavior and an increasing of its mechanical performances. Typically, single DBDs can produce mean force and electric wind velocity up to 1 mN/W and 7 m/s, respectively. With multi-DBD designs, velocity up to 11 m/s has been measured and force up to 350 mN/m. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control

Loading next page...
 
/lp/springer_journal/electrical-and-mechanical-characteristics-of-surface-ac-dielectric-W4LPi2J7Fu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1846-x
Publisher site
See Article on Publisher Site

Abstract

The present paper is a wide review on AC surface dielectric barrier discharge (DBD) actuators applied to airflow control. Both electrical and mechanical characteristics of surface DBD are presented and discussed. The first half of the present paper gives the last results concerning typical single plate-to-plate surface DBDs supplied by a sine high voltage. The discharge current, the plasma extension and its morphology are firstly analyzed. Then, time-averaged and time-resolved measurements of the produced electrohydrodynamic force and of the resulting electric wind are commented. The second half of the paper concerns a partial list of approaches having demonstrated a significant modification in the discharge behavior and an increasing of its mechanical performances. Typically, single DBDs can produce mean force and electric wind velocity up to 1 mN/W and 7 m/s, respectively. With multi-DBD designs, velocity up to 11 m/s has been measured and force up to 350 mN/m.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 5, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off