Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application

Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized... The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σ d.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σ d.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sol-Gel Science and Technology Springer Journals

Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application

Loading next page...
 
/lp/springer_journal/electrical-and-electrochemical-characteristics-of-la0-6sr0-4coo3-nXjfgh0ukX
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Inorganic Chemistry; Optical and Electronic Materials; Nanotechnology
ISSN
0928-0707
eISSN
1573-4846
D.O.I.
10.1007/s10971-018-4675-1
Publisher site
See Article on Publisher Site

Abstract

The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σ d.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σ d.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC.

Journal

Journal of Sol-Gel Science and TechnologySpringer Journals

Published: May 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off