Electrical Activation of Na/K Pumps Can Increase Ionic Concentration Gradient and Membrane Resting Potential

Electrical Activation of Na/K Pumps Can Increase Ionic Concentration Gradient and Membrane... It has been previously demonstrated by our group that our specifically designed synchronization modulation electric field can dynamically entrain the Na/K ATPase molecules, effectively accelerating the pumping action of these molecules. The ATPase molecules are first synchronized by the field, and subsequently their pumping rates are gradually modulated in a stepwise pattern to progressively higher and higher levels. Here, we present results obtained on application of the field to intact twitch skeletal muscle fibers. The ionic concentration gradient across the cell membrane was monitored, with the membrane potential extrapolated using a slow fluorescent probe with a confocal microimaging technique. The applied synchronization-modulation electric field is able to slowly but consistently increase the ionic concentration gradient across the membrane and, hence, hyperpolarize the membrane potential. All of these results were fully eliminated if ouabain was applied to the bathing solution, indicating a correlation with the action of the Na/K pump molecules. These results in combination with our previous results into the entrainment of the pump molecules show that the synchronization-modulation electric field-induced activation of the Na/K pump functions can effectively increase the ionic concentration gradient and the membrane potential. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Electrical Activation of Na/K Pumps Can Increase Ionic Concentration Gradient and Membrane Resting Potential

Loading next page...
 
/lp/springer_journal/electrical-activation-of-na-k-pumps-can-increase-ionic-concentration-FWJImjg0Kz
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0069-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial