Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models and Persson’s Theory

Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models... In this work, we discuss important improvements of asperity models. Specifically, we assess the predictive capabilities of a recently developed multiasperity model, which differs from the original Greenwood and Williamson model by (i) including the coupling between the elastic fields generated by each contact spot, and (ii) taking into account the coalescence among the contact areas, occurring during the loading process. Interaction of the elastic field is captured by summing the contributions, which are analytically known, of the elastic displacements in a given point of the surface due to each Hertzian-like contact spot. The coalescence is instead considered by defining an equivalent contact spot in such a way to guarantee conservation of contact area during coalescence. To evaluate the accuracy of the model, a comparison with fully numerical ‘exact’ calculations and Persson’s contact mechanics theory of elastic rough surfaces is proposed. Results in terms of contact area versus load and separation versus load show that the three approaches give almost the same predictions, while traditional asperity models neglecting coalescence and elastic coupling between contact regions are unable to correctly capture the contact behavior. Finally, very good results are also obtained when dealing with the probability distribution of interfacial stresses and gaps. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models and Persson’s Theory

Loading next page...
 
/lp/springer_journal/elastic-contact-mechanics-of-randomly-rough-surfaces-an-assessment-of-FmMSwSL9eC
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
ISSN
1023-8883
eISSN
1573-2711
D.O.I.
10.1007/s11249-018-1026-x
Publisher site
See Article on Publisher Site

Abstract

In this work, we discuss important improvements of asperity models. Specifically, we assess the predictive capabilities of a recently developed multiasperity model, which differs from the original Greenwood and Williamson model by (i) including the coupling between the elastic fields generated by each contact spot, and (ii) taking into account the coalescence among the contact areas, occurring during the loading process. Interaction of the elastic field is captured by summing the contributions, which are analytically known, of the elastic displacements in a given point of the surface due to each Hertzian-like contact spot. The coalescence is instead considered by defining an equivalent contact spot in such a way to guarantee conservation of contact area during coalescence. To evaluate the accuracy of the model, a comparison with fully numerical ‘exact’ calculations and Persson’s contact mechanics theory of elastic rough surfaces is proposed. Results in terms of contact area versus load and separation versus load show that the three approaches give almost the same predictions, while traditional asperity models neglecting coalescence and elastic coupling between contact regions are unable to correctly capture the contact behavior. Finally, very good results are also obtained when dealing with the probability distribution of interfacial stresses and gaps.

Journal

Tribology LettersSpringer Journals

Published: May 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off