Egocentric-Vision based Hand Posture Control System for Reconnaissance Robots

Egocentric-Vision based Hand Posture Control System for Reconnaissance Robots To facilitate full-loaded commandos to control reconnaissance robots, in this paper, we propose a wearable hand posture control system based on egocentric-vision by imitating the sign language interaction way among commandos. Considering the characteristics of the egocentric-vision on the battlefield, such as complicated backgrounds, large ego-motions and extreme transitions in lighting, a new hand detector based on Binary Edge HOG Block (BEHB) features is proposed to extract articulated postures from the egocentric-vision. Different from many other methods that use skin color cues, our proposed hand detector adopts contour cues and part-based voting idea. This means that our algorithm can be used on the battlefield even in dark environment, because infrared cameras can be used to get contour images rather than skin color images. The experiment result shows that the proposed hand detector can get a better posture detection result on the NUS hand posture dataset II. To improve hand recognition accuracy, a deep ensemble hybrid classifier is proposed by combing hybrid CNN-SVM classifier and ensemble technique. Compared with other state-of-art algorithms, the proposed classifier yields a recognition accuracy of 97.72 % on the NUS hand posture dataset II. At last, to reduce misjudgments during consecutive posture switches, a vote filter is proposed and applied to the sequence of the recognition results. The scout experiment shows that our wearable hand posture control system is more suitable than traditional hand-held controllers for full-loaded commandos to control reconnaissance robots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Intelligent & Robotic Systems Springer Journals

Egocentric-Vision based Hand Posture Control System for Reconnaissance Robots

Loading next page...
 
/lp/springer_journal/egocentric-vision-based-hand-posture-control-system-for-reconnaissance-dlUweBTGdY
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Engineering; Control, Robotics, Mechatronics; Electrical Engineering; Artificial Intelligence (incl. Robotics); Mechanical Engineering
ISSN
0921-0296
eISSN
1573-0409
D.O.I.
10.1007/s10846-016-0440-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial