Efficiently consistent affinity propagation for 3D shapes co-segmentation

Efficiently consistent affinity propagation for 3D shapes co-segmentation Unsupervised co-segmentation for a set of 3D shapes is a challenging problem as no prior information is provided. The accuracy of the current approaches is necessarily restricted by the accuracy of the unsupervised face classification, which is used to provide an initialization for the following optimization to improve the consistency between adjacent faces. However, it is exceedingly difficult to obtain a satisfactory initialization pre-segmentation owing to variation in topology and geometry of 3D shapes. In this study, we consider the unsupervised 3D shape co-segmentation as an exemplar-based clustering problem, aimed at simultaneously discovering optimal exemplars and obtaining co-segmentation results. Therefore, we introduce a novel exemplar-based clustering method based on affinity propagation for 3D shape co-segmentation, which can automatically identify representative exemplars and patterns in 3D shapes considering the high-order statistics, yielding consistent and accurate co-segmentation results. Experiments using various datasets, especially large sets with 200 or more shapes that would be challenging to manually segment, demonstrate that our method exhibits a better performance compared to state-of-the-art methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Visual Computer Springer Journals

Efficiently consistent affinity propagation for 3D shapes co-segmentation

Loading next page...
 
/lp/springer_journal/efficiently-consistent-affinity-propagation-for-3d-shapes-co-5Pk0pP8L00
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Computer Graphics; Computer Science, general; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision
ISSN
0178-2789
eISSN
1432-2315
D.O.I.
10.1007/s00371-018-1538-2
Publisher site
See Article on Publisher Site

Abstract

Unsupervised co-segmentation for a set of 3D shapes is a challenging problem as no prior information is provided. The accuracy of the current approaches is necessarily restricted by the accuracy of the unsupervised face classification, which is used to provide an initialization for the following optimization to improve the consistency between adjacent faces. However, it is exceedingly difficult to obtain a satisfactory initialization pre-segmentation owing to variation in topology and geometry of 3D shapes. In this study, we consider the unsupervised 3D shape co-segmentation as an exemplar-based clustering problem, aimed at simultaneously discovering optimal exemplars and obtaining co-segmentation results. Therefore, we introduce a novel exemplar-based clustering method based on affinity propagation for 3D shape co-segmentation, which can automatically identify representative exemplars and patterns in 3D shapes considering the high-order statistics, yielding consistent and accurate co-segmentation results. Experiments using various datasets, especially large sets with 200 or more shapes that would be challenging to manually segment, demonstrate that our method exhibits a better performance compared to state-of-the-art methods.

Journal

The Visual ComputerSpringer Journals

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off