Efficiently adapting graphical models for selectivity estimation

Efficiently adapting graphical models for selectivity estimation Query optimizers rely on statistical models that succinctly describe the underlying data. Models are used to derive cardinality estimates for intermediate relations, which in turn guide the optimizer to choose the best query execution plan. The quality of the resulting plan is highly dependent on the accuracy of the statistical model that represents the data. It is well known that small errors in the model estimates propagate exponentially through joins, and may result in the choice of a highly sub-optimal query execution plan. Most commercial query optimizers make the attribute value independence assumption: all attributes are assumed to be statistically independent. This reduces the statistical model of the data to a collection of one-dimensional synopses (typically in the form of histograms), and it permits the optimizer to estimate the selectivity of a predicate conjunction as the product of the selectivities of the constituent predicates. However, this independence assumption is more often than not wrong, and is considered to be the most common cause of sub-optimal query execution plans chosen by modern query optimizers. We take a step towards a principled and practical approach to performing cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate that estimation errors can be greatly reduced, leading to orders of magnitude more efficient query execution plans in many cases. Optimization time is kept in the range of tens of milliseconds, making this a practical approach for industrial-strength query optimizers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficiently adapting graphical models for selectivity estimation

Loading next page...
 
/lp/springer_journal/efficiently-adapting-graphical-models-for-selectivity-estimation-D0L7wwuZpQ
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0293-7
Publisher site
See Article on Publisher Site

Abstract

Query optimizers rely on statistical models that succinctly describe the underlying data. Models are used to derive cardinality estimates for intermediate relations, which in turn guide the optimizer to choose the best query execution plan. The quality of the resulting plan is highly dependent on the accuracy of the statistical model that represents the data. It is well known that small errors in the model estimates propagate exponentially through joins, and may result in the choice of a highly sub-optimal query execution plan. Most commercial query optimizers make the attribute value independence assumption: all attributes are assumed to be statistically independent. This reduces the statistical model of the data to a collection of one-dimensional synopses (typically in the form of histograms), and it permits the optimizer to estimate the selectivity of a predicate conjunction as the product of the selectivities of the constituent predicates. However, this independence assumption is more often than not wrong, and is considered to be the most common cause of sub-optimal query execution plans chosen by modern query optimizers. We take a step towards a principled and practical approach to performing cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate that estimation errors can be greatly reduced, leading to orders of magnitude more efficient query execution plans in many cases. Optimization time is kept in the range of tens of milliseconds, making this a practical approach for industrial-strength query optimizers.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off