Efficient subsequence matching over large video databases

Efficient subsequence matching over large video databases Video similarity matching has broad applications such as copyright detection, news tracking and commercial monitoring, etc. Among these applications, one typical task is to detect the local similarity between two videos without the knowledge on positions and lengths of each matched subclip pair. However, most studies so far on video detection investigate the global similarity between two short clips using a pre-defined distance function. Although there are a few works on video subsequence detection, all these proposals fail to provide an effective query processing mechanism. In this paper, we first generalize the problem of video similarity matching. Then, a novel solution called consistent keyframe matching (CKM) is proposed to solve the problem of subsequence matching based on video segmentation. CKM is designed with two goals: (1) good scalability in terms of the query sequence length and the size of video database and (2) fast video subsequence matching in terms of processing time. Good scalability is achieved by employing a batch query paradigm, where keyframes sharing the same query space are summarized and ordered. As such, the redundancy of data access is eliminated, leading to much faster video query processing. Fast subsequence matching is achieved by comparing the keyframes of different video sequences. Specifically, a keyframe matching graph is first constructed and then divided into matched candidate subgraphs. We have evaluated our proposed approach over a very large real video database. Extensive experiments demonstrate the effectiveness and efficiency of our approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient subsequence matching over large video databases

Loading next page...
 
/lp/springer_journal/efficient-subsequence-matching-over-large-video-databases-wt0wej40Fa
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0255-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial