Efficient processing of graph similarity queries with edit distance constraints

Efficient processing of graph similarity queries with edit distance constraints Graphs are widely used to model complicated data semantics in many applications in bioinformatics, chemistry, social networks, pattern recognition, etc. A recent trend is to tolerate noise arising from various sources such as erroneous data entries and find similarity matches. In this paper, we study graph similarity queries with edit distance constraints. Inspired by the $$q$$ -gram idea for string similarity problems, our solution extracts paths from graphs as features for indexing. We establish a lower bound of common features to generate candidates. Efficient algorithms are proposed to handle three types of graph similarity queries by exploiting both matching and mismatching features as well as degree information to improve the filtering and verification on candidates. We demonstrate the proposed algorithms significantly outperform existing approaches with extensive experiments on real and synthetic datasets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient processing of graph similarity queries with edit distance constraints

Loading next page...
 
/lp/springer_journal/efficient-processing-of-graph-similarity-queries-with-edit-distance-hLrYzeFJ0d
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0306-1
Publisher site
See Article on Publisher Site

Abstract

Graphs are widely used to model complicated data semantics in many applications in bioinformatics, chemistry, social networks, pattern recognition, etc. A recent trend is to tolerate noise arising from various sources such as erroneous data entries and find similarity matches. In this paper, we study graph similarity queries with edit distance constraints. Inspired by the $$q$$ -gram idea for string similarity problems, our solution extracts paths from graphs as features for indexing. We establish a lower bound of common features to generate candidates. Efficient algorithms are proposed to handle three types of graph similarity queries by exploiting both matching and mismatching features as well as degree information to improve the filtering and verification on candidates. We demonstrate the proposed algorithms significantly outperform existing approaches with extensive experiments on real and synthetic datasets.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2013

References

  • A formal basis for the heuristic determination of minimum cost paths
    Hart, P; Nilsson, N; Raphael, B

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off