Efficient Patient Care Through Wireless Body Area Networks—Enhanced Technique for Handling Emergency Situations with Better Quality of Service

Efficient Patient Care Through Wireless Body Area Networks—Enhanced Technique for Handling... Wireless body area networks (WBAN) is a wireless network of sensors placed in and around the human body for monitoring the patient conditions remotely. The goal of WBAN networks is to report the patient condition to the monitoring system with maximum reliability and minimum delay and deliver the life critical data in the emergency situation with utmost priority. The proposed MAC protocol is aimed at delivery of emergency packets with maximum reliability and minimum delay through the introduction of mini slots in the beacon enabled superframe for exclusive transmission of the same. To improve the packet delivery ratio of the normal packets and decrease the energy consumption of the low data rate nodes, a packet rate based scheduled slot allocation is added to this protocol. Extensive simulations show that the proposed protocol is able to achieve nearly 98% packet delivery ratio and less than 100 ms delay for emergency packets. By varying the number of allocated scheduled slots based on the packet rate of the nodes, the proposed protocol has shown improved performance in the packet delivery ratio (93%) of normal packets as compared to IEEE 802.15.6 (85%), also the energy consumption of low data rate nodes has decreased by 64%. The results show that the proposed protocol is successful in realizing much better delay and packet delivery values for emergency and normal packets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Efficient Patient Care Through Wireless Body Area Networks—Enhanced Technique for Handling Emergency Situations with Better Quality of Service

Loading next page...
 
/lp/springer_journal/efficient-patient-care-through-wireless-body-area-networks-enhanced-yNCGRy9ax0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4024-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial