Efficient Online Algorithms for Dynamic Shared Path Protection in WDM Optical Networks

Efficient Online Algorithms for Dynamic Shared Path Protection in WDM Optical Networks In this work, we have proposed and studied efficient online algorithms for shared path protection under dynamic traffic conditions in survivable WDM optical mesh networks. Given a connection request, routing and wavelength assignment of a working path and a protection path for the request is formulated as two integer linear programs based on shared and dedicated path protection, respectively. The objective is to minimize the total cost of additional resources used by the working path as well as the protection path to accommodate a new connection request. We then devise two resource efficient online algorithms using pre-computed candidate routes. The first algorithm uses one candidate working path and one candidate protection path for each newly arrived connection request while the second algorithm may use multiple candidate working paths and/or multiple candidate protection paths. The selection of a pair of paths from candidate routes as well as the assignment of appropriate wavelengths to accommodate a connection request is then jointly considered to minimize the total cost of additional resources. The solutions to the ILP formulations serve as the baseline for evaluating the performance of the proposed algorithms. We have evaluated the effectiveness of the proposed online algorithms via extensive simulations in terms of the connection blocking probability and the revenue earnings improved over the dedicated path protection approach. Our simulations indicate that our proposed computationally efficient online algorithms are able to provide 100% restorability against single failures with a resource efficiency comparable to that of the optimal shared path protection. The results also show that a small increase in the number of candidate working paths or protection paths (from 1 to 3) provides better performance, but a further increase does not improve the performance significantly. Therefore, a proper balance can be struck to achieve both satisfactory performance and efficient computation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Efficient Online Algorithms for Dynamic Shared Path Protection in WDM Optical Networks

Loading next page...
 
/lp/springer_journal/efficient-online-algorithms-for-dynamic-shared-path-protection-in-wdm-KayCT00KXS
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-004-5588-1
Publisher site
See Article on Publisher Site

Abstract

In this work, we have proposed and studied efficient online algorithms for shared path protection under dynamic traffic conditions in survivable WDM optical mesh networks. Given a connection request, routing and wavelength assignment of a working path and a protection path for the request is formulated as two integer linear programs based on shared and dedicated path protection, respectively. The objective is to minimize the total cost of additional resources used by the working path as well as the protection path to accommodate a new connection request. We then devise two resource efficient online algorithms using pre-computed candidate routes. The first algorithm uses one candidate working path and one candidate protection path for each newly arrived connection request while the second algorithm may use multiple candidate working paths and/or multiple candidate protection paths. The selection of a pair of paths from candidate routes as well as the assignment of appropriate wavelengths to accommodate a connection request is then jointly considered to minimize the total cost of additional resources. The solutions to the ILP formulations serve as the baseline for evaluating the performance of the proposed algorithms. We have evaluated the effectiveness of the proposed online algorithms via extensive simulations in terms of the connection blocking probability and the revenue earnings improved over the dedicated path protection approach. Our simulations indicate that our proposed computationally efficient online algorithms are able to provide 100% restorability against single failures with a resource efficiency comparable to that of the optimal shared path protection. The results also show that a small increase in the number of candidate working paths or protection paths (from 1 to 3) provides better performance, but a further increase does not improve the performance significantly. Therefore, a proper balance can be struck to achieve both satisfactory performance and efficient computation.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jul 23, 2004

References

  • Optical network survivability: Protection techniques in the WDM layer
    Patre, S.; Maier, G.; Pattavina, A.; Martinelli, M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off