Efficient Monte Carlo clustering in subspaces

Efficient Monte Carlo clustering in subspaces Clustering of high-dimensional data is an important problem in many application areas, including image classification, genetic analysis, and collaborative filtering. However, it is common for clusters to form in different subsets of the dimensions. We present a randomized algorithm for subspace and projected clustering that is both simple and efficient. The complexity of the algorithm is linear in the number of data points and low-order polynomial in the number of dimensions. We present the results of a thorough evaluation of the algorithm using the OpenSubspace framework. Our algorithm outperforms competing subspace and projected clustering algorithms on both synthetic and real-world data sets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge and Information Systems Springer Journals

Efficient Monte Carlo clustering in subspaces

Loading next page...
 
/lp/springer_journal/efficient-monte-carlo-clustering-in-subspaces-rucixosoGK
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Information Systems and Communication Service; IT in Business
ISSN
0219-1377
eISSN
0219-3116
D.O.I.
10.1007/s10115-017-1031-7
Publisher site
See Article on Publisher Site

Abstract

Clustering of high-dimensional data is an important problem in many application areas, including image classification, genetic analysis, and collaborative filtering. However, it is common for clusters to form in different subsets of the dimensions. We present a randomized algorithm for subspace and projected clustering that is both simple and efficient. The complexity of the algorithm is linear in the number of data points and low-order polynomial in the number of dimensions. We present the results of a thorough evaluation of the algorithm using the OpenSubspace framework. Our algorithm outperforms competing subspace and projected clustering algorithms on both synthetic and real-world data sets.

Journal

Knowledge and Information SystemsSpringer Journals

Published: Feb 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off