Efficient management of uncertainty in XML schema matching

Efficient management of uncertainty in XML schema matching Despite advances in machine learning technologies a schema matching result between two database schemas (e.g., those derived from COMA++) is likely to be imprecise. In particular, numerous instances of “possible mappings” between the schemas may be derived from the matching result. In this paper, we study problems related to managing possible mappings between two heterogeneous XML schemas. First, we study how to efficiently generate possible mappings for a given schema matching task. While this problem can be solved by existing algorithms, we show how to improve the performance of the solution by using a divide-and-conquer approach. Second, storing and querying a large set of possible mappings can incur large storage and evaluation overhead. For XML schemas, we observe that their possible mappings often exhibit a high degree of overlap. We hence propose a novel data structure, called the block tree , to capture the commonalities among possible mappings. The block tree is useful for representing the possible mappings in a compact manner and can be efficiently generated. Moreover, it facilitates the evaluation of a probabilistic twig query (PTQ), which returns the non-zero probability that a fragment of an XML document matches a given query. For users who are interested only in answers with k -highest probabilities, we also propose the top- k PTQ and present an efficient solution for it. An extensive evaluation on real-world data sets shows that our approaches significantly improve the efficiency of generating, storing, and querying possible mappings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient management of uncertainty in XML schema matching

Loading next page...
 
/lp/springer_journal/efficient-management-of-uncertainty-in-xml-schema-matching-j9qf1NgcNE
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0248-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial