Efficient keyword search over virtual XML views

Efficient keyword search over virtual XML views Emerging applications such as personalized portals, enterprise search, and web integration systems often require keyword search over semi-structured views. However, traditional information retrieval techniques are likely to be expensive in this context because they rely on the assumption that the set of documents being searched is materialized. In this paper, we present a system architecture and algorithm that can efficiently evaluate keyword search queries over virtual (unmaterialized) XML views. An interesting aspect of our approach is that it exploits indices present on the base data and thereby avoids materializing large parts of the view that are not relevant to the query results. Another feature of the algorithm is that by solely using indices, we can still score the results of queries over the virtual view, and the resulting scores are the same as if the view was materialized. Our performance evaluation using the INEX data set in the Quark (Bhaskar et al. in Quark: an efficient XQuery full-text implementation. In: SIGMOD, 2006) open-source XML database system indicates that the proposed approach is scalable and efficient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Loading next page...
 
/lp/springer_journal/efficient-keyword-search-over-virtual-xml-views-q1I6Ewtjxr
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0126-x
Publisher site
See Article on Publisher Site

Abstract

Emerging applications such as personalized portals, enterprise search, and web integration systems often require keyword search over semi-structured views. However, traditional information retrieval techniques are likely to be expensive in this context because they rely on the assumption that the set of documents being searched is materialized. In this paper, we present a system architecture and algorithm that can efficiently evaluate keyword search queries over virtual (unmaterialized) XML views. An interesting aspect of our approach is that it exploits indices present on the base data and thereby avoids materializing large parts of the view that are not relevant to the query results. Another feature of the algorithm is that by solely using indices, we can still score the results of queries over the virtual view, and the resulting scores are the same as if the view was materialized. Our performance evaluation using the INEX data set in the Quark (Bhaskar et al. in Quark: an efficient XQuery full-text implementation. In: SIGMOD, 2006) open-source XML database system indicates that the proposed approach is scalable and efficient.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off