Efficient k -nearest neighbor search on moving object trajectories

Efficient k -nearest neighbor search on moving object trajectories With the growing number of mobile applications, data analysis on large sets of historical moving objects trajectories becomes increasingly important. Nearest neighbor search is a fundamental problem in spatial and spatio-temporal databases. In this paper, we consider the following problem: Given a set of moving object trajectories D and a query trajectory mq , find the k nearest neighbors to mq within D for any instant of time within the lifetime of mq . We assume D is indexed in a 3D-R-tree and employ a filter-and-refine strategy. The filter step traverses the index and creates a stream of so-called units (linear pieces of a trajectory) as a superset of the units required to build the result of the query. The refinement step processes an ordered stream of units and determines the pieces of units forming the precise result. To support the filter step, for each node p of the index, in preprocessing a time-dependent coverage function C p ( t ) is computed which is the number of trajectories represented in p present at time t . Within the filter step, sophisticated data structures are used to keep track of the aggregated coverages of the nodes seen so far in the index traversal to enable pruning. Moreover, the R-tree index is built in a special way to obtain coverage functions that are effective for pruning. As a result, one obtains a highly efficient k NN algorithm for moving data and query points that outperforms the two competing algorithms by a wide margin. Implementations of the new algorithms and of the competing techniques are made available as well. Algorithms can be used in a system context including, for example, visualization and animation of results. Experiments of the paper can be easily checked or repeated, and new experiments be performed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient k -nearest neighbor search on moving object trajectories

Loading next page...
Copyright © 2010 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


  • Nearest and reverse nearest neighbor queries for moving objects
    Benetis, R.; Jensen, C.S.; Karciauskas, G.; Saltenis, S.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial