Efficient Interval Linear Equality Solving in Constraint Logic Programming

Efficient Interval Linear Equality Solving in Constraint Logic Programming Existing interval constraint logic programming languages, such as BNR Prolog, work under the framework of interval narrowing and are deficient in solving systems of linear constraints over real numbers, which constitute an important class of problems in engineering and other applications. In this paper, we suggest to separate linear equality constraint solving from inequality and non-linear constraint solving. The implementation of an efficient interval linear constraint solver, which is based on the preconditioned interval Gauss-Seidel method, is proposed. We show how the solver can be adapted to incremental execution and incorporated into a constraint logic programming language already equipped with a non-linear solver based on interval narrowing. The two solvers share common interval variables, interact and cooperate in a round-robin fashion during computation, resulting in an efficient interval constraint arithmetic language CIAL. The CIAL prototypes, based on CLP(R), are constructed and compared favorably against several major interval constraint logic programming languages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Efficient Interval Linear Equality Solving in Constraint Logic Programming

Loading next page...
 
/lp/springer_journal/efficient-interval-linear-equality-solving-in-constraint-logic-Ao3Mk5L7DR
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1014754106275
Publisher site
See Article on Publisher Site

Abstract

Existing interval constraint logic programming languages, such as BNR Prolog, work under the framework of interval narrowing and are deficient in solving systems of linear constraints over real numbers, which constitute an important class of problems in engineering and other applications. In this paper, we suggest to separate linear equality constraint solving from inequality and non-linear constraint solving. The implementation of an efficient interval linear constraint solver, which is based on the preconditioned interval Gauss-Seidel method, is proposed. We show how the solver can be adapted to incremental execution and incorporated into a constraint logic programming language already equipped with a non-linear solver based on interval narrowing. The two solvers share common interval variables, interact and cooperate in a round-robin fashion during computation, resulting in an efficient interval constraint arithmetic language CIAL. The CIAL prototypes, based on CLP(R), are constructed and compared favorably against several major interval constraint logic programming languages.

Journal

Reliable ComputingSpringer Journals

Published: Oct 21, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off