Efficient entanglement purification via quantum communication bus

Efficient entanglement purification via quantum communication bus A scheme is proposed to implement entanglement purification for two remote less entangled photons using robust continuous variable coherent modes, called as quantum communication bus (qubus), rather than consuming expensive ancilla single-photon sources. The qubus beams in the coherent states provide for the natural communication in the purification protocol, instead of the classical communication between the distant photons. Weak cross-Kerr nonlinearities, qubus beams and quantum non-demolition (QND) photon-number-resolving measurement are utilized for implementing deterministic entanglement purification. The core element to realize the QND measurement is Kerr nonlinearity. The necessary QND measurement in the present scheme is not an extra, very difficult, addition to the present protocol, but is taken care of by a phase measurement. The entanglement purification protocol (EPP) can obtain a maximally entangled pair with only one step, instead of improving the fidelity of less entangled pairs by performing continuous indefinite iterative purification procedure. The total success probability and fidelity of the present purification scheme can approach unit in principle. In addition, we investigate photon loss of the qubus beams during the transmission and decoherence effects in the entanglement purification caused by such a photon loss. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Efficient entanglement purification via quantum communication bus

Loading next page...
 
/lp/springer_journal/efficient-entanglement-purification-via-quantum-communication-bus-t8hhB5EbOZ
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0735-9
Publisher site
See Article on Publisher Site

Abstract

A scheme is proposed to implement entanglement purification for two remote less entangled photons using robust continuous variable coherent modes, called as quantum communication bus (qubus), rather than consuming expensive ancilla single-photon sources. The qubus beams in the coherent states provide for the natural communication in the purification protocol, instead of the classical communication between the distant photons. Weak cross-Kerr nonlinearities, qubus beams and quantum non-demolition (QND) photon-number-resolving measurement are utilized for implementing deterministic entanglement purification. The core element to realize the QND measurement is Kerr nonlinearity. The necessary QND measurement in the present scheme is not an extra, very difficult, addition to the present protocol, but is taken care of by a phase measurement. The entanglement purification protocol (EPP) can obtain a maximally entangled pair with only one step, instead of improving the fidelity of less entangled pairs by performing continuous indefinite iterative purification procedure. The total success probability and fidelity of the present purification scheme can approach unit in principle. In addition, we investigate photon loss of the qubus beams during the transmission and decoherence effects in the entanglement purification caused by such a photon loss.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 9, 2014

References

  • Quantum entanglement
    Horodecki, R; Horodecki, PL; Horodecki, ML; Horodecki, K

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off