Efficient entanglement concentration for electron-spin W state with the charge detection

Efficient entanglement concentration for electron-spin W state with the charge detection We present two entanglement concentration protocols (ECPs) for arbitrary three-electron W state based on their charges and spins. Different from other ECPs, with the help of the electronic polarization beam splitter and charge detection, the less-entangled W state can be concentrated into a maximally entangled state only with some single charge qubits. The second ECP is more optimal than the first one, for by constructing the complete parity check gate, the second ECP can be used repeatedly to further concentrate the less-entangled state and obtain a higher success probability. Therefore, both the ECPs especially the second one may be useful in current quantum information processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Efficient entanglement concentration for electron-spin W state with the charge detection

Loading next page...
 
/lp/springer_journal/efficient-entanglement-concentration-for-electron-spin-w-state-with-ylzFZ8h6C0
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0511-7
Publisher site
See Article on Publisher Site

Abstract

We present two entanglement concentration protocols (ECPs) for arbitrary three-electron W state based on their charges and spins. Different from other ECPs, with the help of the electronic polarization beam splitter and charge detection, the less-entangled W state can be concentrated into a maximally entangled state only with some single charge qubits. The second ECP is more optimal than the first one, for by constructing the complete parity check gate, the second ECP can be used repeatedly to further concentrate the less-entangled state and obtain a higher success probability. Therefore, both the ECPs especially the second one may be useful in current quantum information processing.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 29, 2012

References

  • Cluster-state preparation and multipartite entanglement analyzer with fermions
    Zhang, XL; Feng, M; Gao, KL
  • Deterministic photon entangler using a charged quantum dot inside a microcavity
    Hu, CY; Munro, WJ; Rarity, JG

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off