Efficient distributed subgraph similarity matching

Efficient distributed subgraph similarity matching Given a query graph $$q$$ q and a data graph $$G$$ G , subgraph similarity matching is to retrieve all matches of $$q$$ q in $$G$$ G with the number of missing edges bounded by a given threshold $$\epsilon $$ ϵ . Many works have been conducted to study the problem of subgraph similarity matching due to its ability to handle applications involved with noisy or erroneous graph data. In practice, a data graph can be extremely large, e.g., a web-scale graph containing hundreds of millions of vertices and billions of edges. The state-of-the-art approaches employ centralized algorithms to process the subgraph similarity queries, and thus, they are infeasible for such a large graph due to the limited computational power and storage space of a centralized server. To address this problem, in this paper, we investigate subgraph similarity matching for a web-scale graph deployed in a distributed environment. We propose distributed algorithms and optimization techniques that exploit the properties of subgraph similarity matching, so that we can well utilize the parallel computing power and lower the communication cost among the distributed data centers for query processing. Specifically, we first relax and decompose $$q$$ q into a minimum number of sub-queries. Next, we send each sub-query to conduct the exact matching in parallel. Finally, we schedule and join the exact matches to obtain final query answers. Moreover, our workload-balance strategy further speeds up the query processing. Our experimental results demonstrate the feasibility of our proposed approach in performing subgraph similarity matching over web-scale graph data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient distributed subgraph similarity matching

Loading next page...
 
/lp/springer_journal/efficient-distributed-subgraph-similarity-matching-GA0dPWqPUZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0381-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial