Efficient discovery of longest-lasting correlation in sequence databases

Efficient discovery of longest-lasting correlation in sequence databases The search for similar subsequences is a core module for various analytical tasks in sequence databases. Typically, the similarity computations require users to set a length. However, there is no robust means by which to define the proper length for different application needs. In this study, we examine a new query that is capable of returning the longest-lasting highly correlated subsequences in a sequence database, which is particularly helpful to analyses without prior knowledge regarding the query length. A baseline, yet expensive, solution is to calculate the correlations for every possible subsequence length. To boost performance, we study a space-constrained index that provides a tight correlation bound for subsequences of similar lengths and offset by intraobject and interobject grouping techniques. To the best of our knowledge, this is the first index to support a normalized distance metric of arbitrary length subsequences. In addition, we study the use of a smart cache for disk-resident data (e.g., millions of sequence objects) and a graph processing unit-based parallel processing technique for frequently updated data (e.g., nonindexable streaming sequences) to compute the longest-lasting highly correlated subsequences. Extensive experimental evaluation on both real and synthetic sequence datasets verifies the efficiency and effectiveness of our proposed methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient discovery of longest-lasting correlation in sequence databases

Loading next page...
 
/lp/springer_journal/efficient-discovery-of-longest-lasting-correlation-in-sequence-YsWJv629Jl
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0432-7
Publisher site
See Article on Publisher Site

Abstract

The search for similar subsequences is a core module for various analytical tasks in sequence databases. Typically, the similarity computations require users to set a length. However, there is no robust means by which to define the proper length for different application needs. In this study, we examine a new query that is capable of returning the longest-lasting highly correlated subsequences in a sequence database, which is particularly helpful to analyses without prior knowledge regarding the query length. A baseline, yet expensive, solution is to calculate the correlations for every possible subsequence length. To boost performance, we study a space-constrained index that provides a tight correlation bound for subsequences of similar lengths and offset by intraobject and interobject grouping techniques. To the best of our knowledge, this is the first index to support a normalized distance metric of arbitrary length subsequences. In addition, we study the use of a smart cache for disk-resident data (e.g., millions of sequence objects) and a graph processing unit-based parallel processing technique for frequently updated data (e.g., nonindexable streaming sequences) to compute the longest-lasting highly correlated subsequences. Extensive experimental evaluation on both real and synthetic sequence datasets verifies the efficiency and effectiveness of our proposed methods.

Journal

The VLDB JournalSpringer Journals

Published: Jun 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off