Efficient Chloride Salt Extraction of Platinum Group Metals from Spent Catalysts

Efficient Chloride Salt Extraction of Platinum Group Metals from Spent Catalysts We show that platinum (Pt) and palladium (Pd) can be efficiently removed from spent catalytic converters by means of a sintering process involving chloride salts. For Pt, mixing the crushed catalyst in an aqueous solution of chloride salts at catalyst/salt weight ratios ranging from 2.5 to 6.7, followed by drying, and 2-h sintering in the reactor furnace at 1100 °C, results in extraction of 80 ± 4% of the metal. For Pd, the addition of fumed silica to the dry chlorination agents was necessary in order to optimize extraction using fractional factorial design of experiments (DOE). Maximum Pd extraction of 93 ± 5% was achieved at 1100 °C with weight ratios of the catalyst material: CaCl2·2H2O:SiO2 = 1:0.6:1.2. Application of a similar protocol to Pt-containing catalytic converters would be expected to result in a similar high level of extraction efficiency. The primary advantage of the proposed extraction process is that it does not involve hazardous chemicals, strong bases/acids, or corrosive gases, and produces, as a byproduct, only small quantities of nontoxic silicate waste. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sustainable Metallurgy Springer Journals

Efficient Chloride Salt Extraction of Platinum Group Metals from Spent Catalysts

Loading next page...
 
/lp/springer_journal/efficient-chloride-salt-extraction-of-platinum-group-metals-from-spent-oj9I8wagmc
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Environment; Sustainable Development; Metallic Materials
ISSN
2199-3823
eISSN
2199-3831
D.O.I.
10.1007/s40831-017-0155-z
Publisher site
See Article on Publisher Site

Abstract

We show that platinum (Pt) and palladium (Pd) can be efficiently removed from spent catalytic converters by means of a sintering process involving chloride salts. For Pt, mixing the crushed catalyst in an aqueous solution of chloride salts at catalyst/salt weight ratios ranging from 2.5 to 6.7, followed by drying, and 2-h sintering in the reactor furnace at 1100 °C, results in extraction of 80 ± 4% of the metal. For Pd, the addition of fumed silica to the dry chlorination agents was necessary in order to optimize extraction using fractional factorial design of experiments (DOE). Maximum Pd extraction of 93 ± 5% was achieved at 1100 °C with weight ratios of the catalyst material: CaCl2·2H2O:SiO2 = 1:0.6:1.2. Application of a similar protocol to Pt-containing catalytic converters would be expected to result in a similar high level of extraction efficiency. The primary advantage of the proposed extraction process is that it does not involve hazardous chemicals, strong bases/acids, or corrosive gases, and produces, as a byproduct, only small quantities of nontoxic silicate waste.

Journal

Journal of Sustainable MetallurgySpringer Journals

Published: Jan 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial