Efficient and stable rescue of classical swine fever virus from cloned cDNA using an RNA polymerase II system

Efficient and stable rescue of classical swine fever virus from cloned cDNA using an RNA... Conventional reverse genetics for classical swine fever virus (CSFV) is based on the transfection of permissive cells with either in vitro or intracellularly synthesized RNA transcripts from a viral genomic cDNA clone. These strategies are complicated, inefficient and time-consuming. This study is aimed to develop an improved reverse genetics method for the direct, rapid and efficient recovery of CSFV from cloned cDNA. The cDNA clone pBRCISM was constructed, which harbors the full-length genomic sequence from the CSFV Shimen strain flanked by the cytomegalovirus promoter (an RNA polymerase II promoter), a chimeric intron, and hammerhead ribozyme sequences at the 5′-end and the hepatitis delta virus ribozyme and SV40 polyadenylation signal sequences at the 3′-end. Infectious progeny virus was rescued from PK-15 cells directly transfected with pBRCISM, and its morphology, one-step growth characteristics and pathogenicity were indistinguishable from the parent virus and virus rescued from classical reverse genetics. The reverse genetics based on RNA polymerase II yielded a 120-fold increase in the titer of nascent virus in 12-h less time than a reverse genetics method based on in vitro transcription. The full-length cDNA clone remained stable and infectious after 20 passages in bacterial cells, in contrast to the instability of the full-length clone without the intron after 9 passages. The improved reverse genetics method developed in the present study is efficient, stable, convenient and cost-effective and will be valuable for the rapid recovery of CSFV mutants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Efficient and stable rescue of classical swine fever virus from cloned cDNA using an RNA polymerase II system

Loading next page...
 
/lp/springer_journal/efficient-and-stable-rescue-of-classical-swine-fever-virus-from-cloned-46m0QNNto0
Publisher
Springer Vienna
Copyright
Copyright © 2013 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1548-8
Publisher site
See Article on Publisher Site

Abstract

Conventional reverse genetics for classical swine fever virus (CSFV) is based on the transfection of permissive cells with either in vitro or intracellularly synthesized RNA transcripts from a viral genomic cDNA clone. These strategies are complicated, inefficient and time-consuming. This study is aimed to develop an improved reverse genetics method for the direct, rapid and efficient recovery of CSFV from cloned cDNA. The cDNA clone pBRCISM was constructed, which harbors the full-length genomic sequence from the CSFV Shimen strain flanked by the cytomegalovirus promoter (an RNA polymerase II promoter), a chimeric intron, and hammerhead ribozyme sequences at the 5′-end and the hepatitis delta virus ribozyme and SV40 polyadenylation signal sequences at the 3′-end. Infectious progeny virus was rescued from PK-15 cells directly transfected with pBRCISM, and its morphology, one-step growth characteristics and pathogenicity were indistinguishable from the parent virus and virus rescued from classical reverse genetics. The reverse genetics based on RNA polymerase II yielded a 120-fold increase in the titer of nascent virus in 12-h less time than a reverse genetics method based on in vitro transcription. The full-length cDNA clone remained stable and infectious after 20 passages in bacterial cells, in contrast to the instability of the full-length clone without the intron after 9 passages. The improved reverse genetics method developed in the present study is efficient, stable, convenient and cost-effective and will be valuable for the rapid recovery of CSFV mutants.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off