Efficient and effective similarity search over probabilistic data based on Earth Mover’s Distance

Efficient and effective similarity search over probabilistic data based on Earth Mover’s Distance Advances in geographical tracking, multimedia processing, information extraction, and sensor networks have created a deluge of probabilistic data. While similarity search is an important tool to support the manipulation of probabilistic data, it raises new challenges to traditional relational databases. The problem stems from the limited effectiveness of the distance metrics employed by existing database systems. On the other hand, several more complicated distance operators have proven their values for better distinguishing ability in specific probabilistic domains. In this paper, we discuss the similarity search problem with respect to Earth Mover’s Distance (EMD). EMD is the most successful distance metric for probability distribution comparison but is an expensive operator as it has cubic time complexity. We present a new database indexing approach to answer EMD-based similarity queries, including range queries and k -nearest neighbor queries on probabilistic data. Our solution utilizes primal-dual theory from linear programming and employs a group of B + trees for effective candidate pruning. We also apply our filtering technique to the processing of continuous similarity queries, especially with applications to frame copy detection in real-time videos. Extensive experiments show that our proposals dramatically improve the usefulness and scalability of probabilistic data management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient and effective similarity search over probabilistic data based on Earth Mover’s Distance

Loading next page...
 
/lp/springer_journal/efficient-and-effective-similarity-search-over-probabilistic-data-eyLQXB3X0y
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0258-2
Publisher site
See Article on Publisher Site

Abstract

Advances in geographical tracking, multimedia processing, information extraction, and sensor networks have created a deluge of probabilistic data. While similarity search is an important tool to support the manipulation of probabilistic data, it raises new challenges to traditional relational databases. The problem stems from the limited effectiveness of the distance metrics employed by existing database systems. On the other hand, several more complicated distance operators have proven their values for better distinguishing ability in specific probabilistic domains. In this paper, we discuss the similarity search problem with respect to Earth Mover’s Distance (EMD). EMD is the most successful distance metric for probability distribution comparison but is an expensive operator as it has cubic time complexity. We present a new database indexing approach to answer EMD-based similarity queries, including range queries and k -nearest neighbor queries on probabilistic data. Our solution utilizes primal-dual theory from linear programming and employs a group of B + trees for effective candidate pruning. We also apply our filtering technique to the processing of continuous similarity queries, especially with applications to frame copy detection in real-time videos. Extensive experiments show that our proposals dramatically improve the usefulness and scalability of probabilistic data management.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off